Open Access
Issue
Hydroécol. Appl.
Volume 22, 2022
Article Number 1
Number of page(s) 26
DOI https://doi.org/10.1051/hydro/2021003
Published online 23 June 2022
  • Abbott M.B. & Stafford T.W., 1996. Radiocarbon geochemistry of modern and ancient Arctic Lake Systems, Baffin Island, Canada. Quat. Res. 45(3): 300–311. DOI: 10.1006/qres.1996.0031. [Google Scholar]
  • Appleby P.G., 2000. Radiometric dating of sediment records in European mountain lakes. J. Limnol. 59(S1): 1–14. DOI: 10.4081/jlimnol.2000.s1.1. [Google Scholar]
  • Arnaud F., Revel-Rolland M., Bosch D., Winiarski T., Desmet M., Tribovillard N. & Givelet N., 2004. A 300 years history of lead contamination in northern French Alps reconstructed from distant lake sediment records. J. Environ. Monit. 6(5): 448–456. DOI: 10.1039/B314947A. [CrossRef] [PubMed] [Google Scholar]
  • Bajard M., Etienne D., Quinsac S., Dambrine E., Sabatier P., Frossard V., Gaillard J., Develle A.-L., Poulenard J., Arnaud F. & Dorioz J.-M., 2018. Legacy of early anthropogenic effects on recent lake eutrophication (Lake Bénit, Northern French Alps). Anthropocene 24: 72–87. DOI: 10.1016/j.ancene.2018.11.005. [CrossRef] [Google Scholar]
  • Bajard M., Sabatier P., David F., Develle A.-L., Reyss J.-L., Fanget B., Malet E., Arnaud D., Augustin L., Crouzet C., Poulenard J. & Arnaud F., 2015. Erosion record in Lake La Thuile sediments (Prealps, France): Evidence of montane landscape dynamics throughout the Holocene. The Holocene 26(3): 350–364. DOI: 10.1177/0959683615609750. [Google Scholar]
  • Barros N., Cole J.J., Tranvik L.J., Prairie Y.T., Bastviken D., Huszar V.L.M., del Giorgio P. & Roland F., 2011. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat. Geosci. 4(9): 593–596. DOI: 10.1038/ngeo1211. [CrossRef] [Google Scholar]
  • Blaauw M., 2020. Clam: Classical age-depth modelling of cores from deposits. R Package Version 234, https://CRAN.R-project.org/package=clam. [Google Scholar]
  • Blais J.M. & Kalff J., 1995. The influence of lake morphometry on sediment focusing. Limnol. Oceanogr. 40(3): 582–588. DOI: 10.4319/lo.1995.40.3.0582. [Google Scholar]
  • Caraco N., Bauer J.E., Cole J.J., Petsch S. & Raymond P., 2010. Millennial-aged organic carbon subsidies to a modern river food web. Ecology 91(8): 2385–2393. DOI: 10.1890/09-0330.1. [CrossRef] [PubMed] [Google Scholar]
  • Chanudet V., Gaillard J., Lambelain J., Demarty M., Descloux S., Félix-Faure J., Poirel A. & Dambrine E., 2020. Emission of greenhouse gases from French temperate hydropower reservoirs. Aquat. Sci. 82(3): 51. DOI: 10.1007/s00027-020-00721-3. [CrossRef] [Google Scholar]
  • Christie C.E. & Smol J.P., 1996. Limnological effects of 19th century canal construction and other disturbances on the trophic state history of Upper Rideau Lake, Ontario. Lake Reserv. Manag. 12(4): 448–454. DOI: 10.1080/07438149609354284. [Google Scholar]
  • Cole J.J., Prairie Y.T., Caraco N.F., McDowell W.H., Tranvik L.J., Striegl R.G., Duarte C.M., Kortelainen P., Downing J.A., Middelburg J.J. & Melack J., 2007. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184. DOI: 10.1007/s10021-006-9013-8. [Google Scholar]
  • Debon F., Cocherie A., Ménot R.-P., Vivier G. & Barféty J.-C., 1994. Datation du plutonisme magnésien varsique des massifs cristallins externes des Alpes: l’exemple du granite des Sept Laux (massif de Belledonne, France). Comptes Rendus Acad Sci Paris t. 318, série II: 1797–1504. [Google Scholar]
  • Debon F. & Lemmet M., 1999. Evolution of Mg/Fe ratios in Late Variscan plutonic rocks from the external crystalline Massifs of the Alps (France, Italy, Switzerland). J. Petrol. 40(7): 1151–1185. [CrossRef] [Google Scholar]
  • Dieter D., Herzog C. & Hupfer M., 2015. Effects of drying on phosphorus uptake in re-flooded lake sediments. Environ. Sci. Pollut. Res. 22(21): 17065–17081. DOI: 10.1007/s11356-015-4904-x. [CrossRef] [PubMed] [Google Scholar]
  • Dixit S.S., Smol J.P., Kingston J.C. & Charles D.F., 1992. Diatoms: Powerful indicators of environmental change. Environ. Sci. Technol. 26(1): 22–33. DOI: 10.1021/es00025a002. [Google Scholar]
  • Egli M., Sartori G., Mirabella A., Favilli F., Giaccai D. & Delbos E., 2009. Effect of north and south exposure on organic matter in high Alpine soils. Geoderma 149(1-2): 124–136. DOI: 10.1016/j.geoderma.2008.11.027. [CrossRef] [Google Scholar]
  • Électricité De France I.U.-R., 2003. Chute des Sept Laux. Demande de renouvellement de concession. Mise à jour: Novembre 2007. Grenoble: Électricité De France. [Google Scholar]
  • Favilli F., Egli M., Sartori G., Cherubini P., Brandova D. & Haeberli W., 2009. Application of relative and absolute dating techniques in the Alpine environment. Studi Trentini Sci. Natinali Acta Geol. 85: 93–108. [Google Scholar]
  • Félix-Faure J., Gaillard J., Descloux S., Chanudet V., Poirel A., Baudoin J.-M., Avrillier J.-N., Millery A. & Dambrine E., 2019a. Contribution of flooded soils to sediment and nutrient fluxes in a hydropower reservoir (Sarrans, Central France). Ecosystems 22(2): 312–330. DOI: 10.1007/s10021-018-0274-9. [CrossRef] [Google Scholar]
  • Félix-Faure J., Walter C., Balesdent J., Chanudet V., Avrillier J.-N., Hossann C., Baudoin J.-M. & Dambrine E., 2019b. Soils drowned in water impoundments: A new frontier. Front. Environ. Sci. 7(53). DOI: 10.3389/fenvs.2019.00053. [Google Scholar]
  • France R., 1995. Carbon-13 enrichment in benthic compared to planktonic algae:foodweb implications. Mar. Ecol. Prog. Ser. 124: 307–312. DOI: 10.3354/meps124307. [CrossRef] [Google Scholar]
  • Friedl G. & Wüest A., 2002. Disrupting biogeochemical cycles – Consequences of damming. Aquat. Sci. 64: 55–65. DOI: 1015-1621/02/010055-11. [CrossRef] [Google Scholar]
  • Furey P.C., Nordin R.N. & Mazumber A., 2004. Water level drawdown affects physical and biogeochemical properties of littoral sediments of a reservoir and a natural lake. Lake Reserv. Manag. 20(4): 280–595. DOI: 10.1080/07438140409354158. [Google Scholar]
  • Gasquet D., 1979. Étude pétrologique, géochimique et structurale des terrains cristallins de Belledonne et du Grand Chatelard traversés par les galeries E.D.F. Arc-Isère-Alpes Françaises. Available at: https://tel.archives-ouvertes.fr/tel-00537312. [Google Scholar]
  • Giguet-Covex C., Arnaud F., Poulenard J., Disnar J.-R., Delhon C., Francus P., David F., Enters D., Rey P.-J. & Delannoy J.-J., 2011. Changes in erosion patterns during the Holocene in a currently treeless subalpine catchment inferred from lake sediment geochemistry (Lake Anterne, 2063 m a.s.l., NW French Alps): The role of climate and human activities. The Holocene 21(4): 651–665. DOI: 10.1177/0959683610391320. [CrossRef] [Google Scholar]
  • Grimard Y. & Jones H.G., 1982. Trophic upsurge in new reservoirs: a model for total phosphorus concentrations. Can. J. Fish. Aquat. Sci. 39(11): 1473–1483. DOI: 10.1139/f82-199. [CrossRef] [Google Scholar]
  • Guénand Y. 2020 Rôle de l’hydrologie sur la variabilité saisonnière hydro-biogéochimique d’un lac alpin. Cas des lacs alpins naturels ou équipés pour la production hydroélectrique. Thèse USMB, 173 p. [Google Scholar]
  • Guénand Y., Perga M.-E., Chanudet V. & Bouffard D., 2020. Hydropower operations modulate sensitivity to meteorological forcing in a high altitude reservoir. Aquat. Sci. 82(3): 60. DOI: 10.1007/s00027-020-00734-y. [Google Scholar]
  • Guillemette F., Bianchi T.S. & Spencer R.G.M., 2017. Old before your time: Ancient carbon incorporation in contemporary aquatic foodwebs. Limnol. Oceanogr. 62(4): 1682–1700. DOI: 10.1002/lno.10525. [Google Scholar]
  • Guyard H., Chapron E., St-Onge G., Anselmetti F.S., Arnaud F., Magand O., Francus P. & Mélières M.-A., 2007. High-altitude varve records of abrupt environmental changes and mining activity over the last 4000 years in the Western French Alps (Lake Bramant, Grandes Rousses Massif). Q. Sci. Rev. 26(19-21): 2644–2660. DOI: 10.1016/j.quascirev.2007.07.007. [CrossRef] [Google Scholar]
  • Hall R.I., Leavitt P.R., Dixit A.S., Quinlan R. & Smol J.P., 1999. Limnological succession in reservoirs: a paleolimnological comparison of two methods of reservoir formation. Can. J. Fish. Aquat. Sci. 56(6): 1109–1121. DOI: 10.1139/f99-047. [CrossRef] [Google Scholar]
  • Hellsten S.K., 1997. Environmental factors related to water level regulation – A comparative study in northern Finland. Boreal Environ. Res. 2: 345–368. [Google Scholar]
  • Hirsch P.E., Eloranta A.P., Amundsen P.-A., Brabrand Å., Charmasson J., Helland I.P., Power M., Sánchez-Hernández J., Sandlund O.T., Sauterleute J.F., Skoglund S., Ugedal O. & Yang H., 2017. Effects of water level regulation in alpine hydropower reservoirs: an ecosystem perspective with a special emphasis on fish. Hydrobiologia 794(1): 287–301. DOI: 10.1007/s10750-017-3105-7. [CrossRef] [Google Scholar]
  • Houel S., Louchouarn P., Lucotte M., Canuel R. & Ghaleb B., 2006. Translocation of soil organic matter following reservoir impoundment in boreal systems: Implications for in situ productivity. Limnol. Oceanogr. 51(3): 1497–1513. DOI: 10.4319/lo.2006.51.3.1497. [CrossRef] [Google Scholar]
  • IUSS Working Group WRB, 2015. Base de référence mondiale pour les ressources en sols 2014. Rapport sur les ressources en sols du monde No106, Mise à jour 2015. Rome: FAO. [Google Scholar]
  • Jacob F., 2006. Amenagement Hydroelectrique du Font de France. Étude environnementale de deux lacs. Rapport additif 2006. Électricité de France et SAGE environnement. [Google Scholar]
  • Jansson R., Nilsson C. & Renöfält B., 2000. Fragmentation of riparian floras in rivers with multiple dams. Ecology 81(4): 899–903. DOI: 10.1890/0012-9658(2000)081[0899:FORFIR]2.0.CO;2. [CrossRef] [Google Scholar]
  • Jigorel A., Bouedo A., Nicolas R. & Morin J.-P., 2007. Stockage du phosphore dans les sédiments d’un réservoir eutrophe (Gouet, Bretagne, France). J.P. Lobo, J.M.P. Vieira, Eds. Guimaraes, France: International Association of Hydrological Sciences, 15 p. [Google Scholar]
  • Kimmel B.L. & Groeger A.W., 1986. Limnological and ecological changes associated with reservoir aging. In: Reservoir fisheries management: Strategies for the 80’s (G.E. Hall, M.J. Van Den Avyle, Eds.). Bethesda, Maryland: Reservoir Committee, Southern Division of American Fisheries Society, pp. 103–109. [Google Scholar]
  • Klaminder J., Appleby P., Crook P. & Renberg I., 2012. Post-deposition diffusion of 137Cs in lake sediment: Implications for radiocaesium dating. Sedimentology 59(7): 2259–2267. DOI: 10.1111/j.1365-3091.2012.01343.x. [CrossRef] [Google Scholar]
  • Krammer K. & Lange-Bertalot H., 1991. Susswasserflora von mitteleuropa 2. Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Stuttgart: Gustav Fischer Verlag. [Google Scholar]
  • Lange-Bertalot H., Hofmann G., Werum M. & Cantonati M., 2017. Freshwater benthic diatoms of Central Europe: Over 800 common species used in ecological assessment. Schmitten-Oberreifenberg: Koeltz BotanicalBooks. [Google Scholar]
  • Lima A.C., Agostinho C.S., Sayanda D., Pelicice F.M., Soares A.M.V.M. & Monaghan K.A., 2016. The rise and fall of fish diversity in a neotropical river after impoundment. Hydrobiologia 763(1): 207–221. DOI: 10.1007/s10750-015-2377-z. [CrossRef] [MathSciNet] [Google Scholar]
  • Maavara T., Lauerwald R., Regnier P. & Van Cappellen P., 2017. Global perturbation of organic carbon cycling by river damming. Nat. Commun. 8(1): 15347. DOI: 10.1038/ncomms15347. [CrossRef] [Google Scholar]
  • Marwick T.R., Tamooh F., Teodoru C.R., Borges A.V., Darchambeau F. & Bouillon S., 2015. The age of river-transported carbon: A global perspective: The age of river-transported carbon. Glob. Biogeochem. Cycles 29(2): 122–137. DOI: 10.1002/2014GB004911. [CrossRef] [Google Scholar]
  • Milbrink G., Vrede T., Tranvik L.J. & Rydin E., 2011. Large-scale and long-term decrease in fish growth following the construction of hydroelectric reservoirs. Can. J. Fish. Aquat. Sci. 68(12): 2167–2173. DOI: 10.1139/f2011-131. [Google Scholar]
  • Newbold J.D., Mulholland P.J., Elwood J.W. & O’Neill R.V., 1982. Organic carbon spiralling in stream ecosystems. Oikos 38(3): 266. DOI: 10.2307/3544663. [CrossRef] [Google Scholar]
  • Nilsson C., Reidy C.A., Dynesius M. & Revenga C., 2005. Fragmentation and flow regulation of the World’s large river systems. Science 308: 405–408. DOI: 10.1126/science.1107887. [CrossRef] [PubMed] [Google Scholar]
  • Olsen S.R., Cole C.V., Watanabe F.S. & Dean L.A., 1954. Estimation of bioavailable phosphorus in soils by extraction with sodium bicarbonate. Soil and Water Conservation Research Branch, Agricultural Research Service. United States Department of Agriculture. [Google Scholar]
  • Ostrofsky M.L., 1978. Trophic changes in reservoirs: An hypothesis using phosphorus budget models. Int. Rev. Gesamten Hydrobiol. Hydrogr. 63(4): 481–499. DOI: 10.1002/iroh.19780630403. [CrossRef] [Google Scholar]
  • Ostrofsky M.L. & Duthie H.C., 1980. Trophic upsurge and the relationship between phytoplankton biomass and productivity in Smallwood Reservoir, Canada. Can. J. Bot. 58(10): 1174–1180. DOI: 10.1139/b80-146. [Google Scholar]
  • Passy S.I., 2007. Diatom ecological guilds display distinct and predictable behavior along nutrient and disturbance gradients in running waters. Aquat. Bot. 86(2): 171–178. DOI: 10.1016/j.aquabot.2006.09.018. [CrossRef] [Google Scholar]
  • Pont D., Chappaz R., Brun G. & Champeau A., 1989. Interactions zooplancton-poissons dans une retenue oligotrophe de mise en eau récente (Ste-Croix, Provence, France). Rev. Sci. Eau 2(4): 777–792. DOI: 10.7202/705054ar. [Google Scholar]
  • Prairie Y.T., Alm J., Beaulieu J., Barros N., Battin T., Cole J., del Giorgio P., DelSontro T., Guérin F., Harby A., Harrison J., Mercier-Blais S., Serça D., Sobek S. & Vachon D., 2018. Greenhouse gas emissions from freshwater reservoirs: What does the atmosphere see? Ecosystems 21(5): 1058–1071. DOI: 10.1007/s10021-017-0198-9. [CrossRef] [PubMed] [Google Scholar]
  • R Core Team, 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Found. Stat. Comput., https://www.R-project.org/. [Google Scholar]
  • Reimer P.J., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Ramsey C.B., Buck C.E., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Haflidason H., Hajdas I., Hatté C., Heaton T.J., Hoffmann D.L., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., Manning S.W., Niu M., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Staff R.A., Turney C.S.M. & van der Plicht J., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50 000 years cal. BP. Radiocarbon 55(4): 1869–1887. DOI: 10.2458/azu_js_rc.55.16947. [CrossRef] [Google Scholar]
  • Rimet F. & Bouchez A., 2012. Life-forms, cell-sizes and ecological guilds of diatoms in European rivers. Knowl. Manag. Aquat. Ecosyst. (406): 01. DOI: 10.1051/kmae/2012018. [Google Scholar]
  • Rivera-Rondón C.A. & Catalan J., 2017. The ratio between chrysophycean cysts and diatoms in temperate, mountain lakes: Some recommendations for its use in paleolimnology. J. Paleolimnol. 57(3): 273–285. DOI: 10.1007/s10933-017-9946-2. [CrossRef] [Google Scholar]
  • Robbins C.J., Yeager A.D., Cook S.C., Doyle R.D., Maurer J.R., Walker C.M., Back J.A., Whigham D.F. & King R.S., 2020. Low-level dissolved organic carbon subsidies drive a trophic upsurge in a boreal stream. Freshw. Biol. 65(5): 920–934. DOI: 10.1111/fwb.13478. [Google Scholar]
  • Rose N.L., 2015. Spheroidal Carbonaceous fly ash particles provide a globally synchronous stratigraphic marker for the Anthropocene. Environ. Sci. Technol. 49(7): 4155–4162. DOI: 10.1021/acs.est.5b00543. [CrossRef] [PubMed] [Google Scholar]
  • Schiff S.L., Aravena R., Trumbore S.E., Hinton M.J., Elgood R. & Dillon P.J., 1997. Export of DOC from forested catchments on the Precambrian Shield of Central Ontario: Clues from 13C and 14C. Biogeochemistry 36(1): 43–65. DOI: 10.1023/A:1005744131385. [CrossRef] [Google Scholar]
  • Shand C.A. & Wendler R., 2014. Portable X-ray fluorescence analysis of mineral and organic soils and the influence of organic matter. J. Geochem. Explor. 143: 31–42. DOI: 10.1016/j.gexplo.2014.03.005. [Google Scholar]
  • Smol J.P., 1983. Paleophycology of a high arctic lake near Cape Herschel, Ellesmere Island. Can. J. Bot. 61(8): 2195–2204. DOI: 10.1139/b83-238. [CrossRef] [Google Scholar]
  • Smol J.P., 1985. The ratio of diatom frustules to chrysophycean statospores: A useful paleolimnological index. Hydrobiologia 123(3): 199–208. DOI: 10.1007/BF00034378. [CrossRef] [Google Scholar]
  • Spitale D., Angeli N., Lencioni V., Tolotti M. & Cantonati M., 2015. Comparison between natural and impacted Alpine lakes six years after hydropower exploitation has ceased. Biologia (Bratisl.) 70(12): 1597–1605. DOI: 10.1515/biolog-2015-0185. [CrossRef] [Google Scholar]
  • Thevenon F., Adatte T., Spangenberg J.E. & Anselmetti F.S., 2012. Elemental (C/N ratios) and isotopic δ15Norg, δ13Corg compositions of sedimentary organic matter from a high-altitude mountain lake (Meidsee, 2661 m a.s.l., Switzerland): Implications for Lateglacial and Holocene Alpine landscape evolution. The Holocene 22(10): 1135–1142. DOI: 10.1177/0959683612441841. [CrossRef] [Google Scholar]
  • Tittel J., Hüls M. & Koschorreck M., 2019. Terrestrial vegetation drives methane production in the sediments of two German reservoirs. Sci. Rep. 9(1): 15944. DOI: 10.1038/s41598-019-52288-1. [CrossRef] [Google Scholar]
  • Turgeon K., Solomon C.T., Nozais C. & Gregory-Eaves I., 2016. Do novel ecosystems follow predictable trajectories? Testing the trophic surge hypothesis in reservoirs using fish. Ecosphere 7(12): e01617. DOI: 10.1002/ecs2.1617. [CrossRef] [Google Scholar]
  • Van Cappellen P. & Maavara T., 2016. Rivers in the Anthropocene: Global scale modifications of riverine nutrient fluxes by damming. Ecohydrol. Hydrobiol. 16(2): 106–111. DOI: 10.1016/j.ecohyd.2016.04.001. [CrossRef] [Google Scholar]
  • Van Dam H., Mertens A. & Sinkeldam J., 1994. A coded checklist and ecological indicator values of freshwater diatoms from The Netherlands. Neth. J. Aquat. Ecol. 28(1): 117–133. DOI: 10.1007/BF02334251. [CrossRef] [Google Scholar]
  • Wickham H., Averick M., Bryan J., Chang W., D’Agostino McGowan L., François R., Grolemund G., Hayes A., Henry L., Hester J., Kuhn M., Lin Pedersen T., Miller E., Milton Bache S., Müller K., Ooms J., Robinson D., Paige Seidel D., Spinu V., Takahashi K., Vaughan D., Wilke C., Woo K. & Yutani H., 2019. Welcome to the tidyverse. J. Open Source Softw. 4(43): 1686. DOI: 10.21105/joss.01686. [Google Scholar]
  • Wilhelm B., Arnaud F., Enters D., Allignol F., Legaz A., Magand O., Revillon S., Giguet-Covex C. & Malet E., 2012. Does global warming favour the occurrence of extreme floods in European Alps? First evidences from a NW Alps proglacial lake sediment record. Clim. Change 113(3-4): 563–581. DOI: 10.1007/s10584-011-0376-2. [CrossRef] [Google Scholar]
  • Wilson S.E., Cumming B.F. & Smol J.P., 1996. Assessing the reliability of salinity inference models from diatom assemblages: An examination of a 219-lake data set from western North America. Can. J. Fish. Aquat. Sci. 53(7): 1580–1594. DOI: 10.1139/f96-094. [Google Scholar]
  • Wolfe A.P., Miller G.H., Olsen C.A., Forman S.L., Doran P.T. & Holmgren S.U., 2004. Geochronology of high latitude lake sediments. In: Long-term Environmental Change in Arctic and Antarctic Lakes. Developments in Paleoenvironmental Research (J.P. Smol, R. Pienitz, M.S.V. Douglas, Eds.). Dordrecht: Springer Netherlands, pp. 19–52. DOI: 10.1007/978-1-4020-2126-8_2. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.