Open Access
Pré-publication électronique
Dans une revue
Hydroécol. Appl.
DOI https://doi.org/10.1051/hydro/2018002
Publié en ligne 7 mai 2018
  • Agostinho C.S., Pelicice F.M., Marques E.E., Soares A.B. & de Almeida D.A.A., 2011. All that goes up must come down? Absence of downstream passage through a fish ladder in a large Amazonian river. Hydrobiologia 675: 1–12. [CrossRef] [Google Scholar]
  • Avramidou E.V., Ganopoulos I.V., Doulis A.G., Tsaftaris A.S. & Aravanopoulos F.A., 2015. Beyond population genetics: natural epigenetic variation in wild cherry (Prunus avium). Tree Genet. Genomes 11 (5), n° 95. DOI: 10.1007/s11295-015-0921-7. [Google Scholar]
  • Bossdorf O., Richards C.L. & Pigliucci M., 2008. Epigenetics for ecologists. Ecol. Lett. 11: 106–115. [Google Scholar]
  • Boubee J.A.T. & Williams E.K., 2006. Downstream passage of silver eels at a small hydroelectric facility. Fish. Manag. Ecol. 13: 165–176. [CrossRef] [Google Scholar]
  • Bousquet C.A.H., Petit O., Arrivé M., Robin J.P. & Sueur C., 2015. Personality tests predict responses to a spatial-learning task in mallards, Anas platyrhynchos. Anim. Behav. 110: 145–154. [CrossRef] [Google Scholar]
  • Collignon B. & Detrain C., 2010. Distributed leadership and adaptive decision-making in the ant Tetramorium caespitum. Proc. Biol. Sci. 277: 1267–1273. [CrossRef] [PubMed] [Google Scholar]
  • Coppens C.M., De Boer S.F. & Koolhaas J.M., 2010. Coping styles and behavioural flexibility: Towards underlying mechanisms. Philos. Trans. R. Soc. B. Biol. Sci. 365: 4021–4028. [CrossRef] [Google Scholar]
  • Côté C.L., Castonguay M., Kalujnaia M.S., Cramb G. & Bernatchez L., 2014. In absence of local adaptation, plasticity and spatially varying selection rule: A view from genomic reaction norms in a panmictic species (Anguilla rostrata). BMC Genomics 15 (403). DOI: 10.1186/1471-2164-15-403. [Google Scholar]
  • Côté C.L., Pavey S.A., Stacey J.A., Pratt T.C., Castonguay M., Audet C. & Bernatchez L., 2015. Growth, female size, and sex Ratio variability in American eel of different prigins in both controlled conditions and the wild: Implications for stocking programs. Trans. Am. Fish. Soc. 144: 246–257. [CrossRef] [Google Scholar]
  • Cote D., Kehler D.G., Bourne C. & Wiersma Y.F., 2009. A new measure of longitudinal connectivity for stream networks. Landsc. Ecol. 24: 101–113. [CrossRef] [Google Scholar]
  • Crews D. & Gore A.C., 2014. Chapter 26 – Transgenerational epigenetics: Current controversies and debates. In: Transgenerational Epigenetics (T. Tollefsbol, Ed.), pp. 371–390. Oxford: Academic Press. [Google Scholar]
  • Croze O. & Larinier M., 2007. Mitigation de l’impact des seuils et barrages sur la circulation des poissons migrateurs en rivière : solutions techniques et limites. (C. G. a. m. e. f. T. n. d. c. e. i. environnementale, Ed.), pp. 155–159. Paris : SHF – AIPCN – CETMEF. [Google Scholar]
  • Davey A. & Jellyman D., 2005. Sex determination in freshwater eels and management options for manipulation of sex. Rev. Fish Biol. Fish. 15: 37–52. [CrossRef] [Google Scholar]
  • Diotel N., Le Page Y., Mouriec K., Tong S.K., Pellegrini E., Valliant C., Anglade I., Brion F., Pakdel F., Chung B.C. & Kah O., 2010. Aromatase in the brain of teleost fish: Expression, regulation and putative functions. Front. Neuroendocrinol. 31: 172–192. [CrossRef] [PubMed] [Google Scholar]
  • Farine D.R., Montiglio P.O. & Spiegel O., 2015. From individuals to groups and back: the evolutionary implications of group phenotypic composition. Trends Ecol. Evol. 30: 609–621. [CrossRef] [PubMed] [Google Scholar]
  • Feunteun E., Laffaille P., Robinet T., Briand C., Baisez A., Olivier J.-M. & Acou A., 2003. A review of upstream migration andmovements in inland waters by anguillid eels: toward a general theory. In: Eel Biology (K. Aida, K. Tsukamoto & K. Yamauchi, Eds.), pp. 181–190. Tokyo: Springer. [Google Scholar]
  • Garcia-Segura L.M., 2008. Aromatase in the brain: not just for reproduction anymore. J. Neuroendocrinol. 20: 705–712. [CrossRef] [PubMed] [Google Scholar]
  • Garenc C., Silversides F.G. & Guderley H., 1998. Burst swimming and its enzymatic correlates in the threespine stickleback (Gasterosteus aculeatus): full-sib heritabilities. Can. J. Zool. – Rev. Can. Zool. 76: 680–688. [CrossRef] [Google Scholar]
  • Geffroy B., 2013. Déterminisme environnemental du sexe chez l’anguille européenne (Anguilla anguilla L.). Thèse de doctorat – spécialité physiologie et biologie des organismes–populations–interactions, Université de Pau et des pays de l’Adour – École doctorale 211 sciences exactes et leurs applications, pp. 408. [Google Scholar]
  • Geffroy B. & Bardonnet A., 2012. Differential effects of behaviour, propensity to migrate and recruitment season on glass eels and elvers’ growing performance. Ecol. Freshw. Fish 21: 469–482. DOI: 10.1111/j.1600-0633.2012.00566.x. [CrossRef] [Google Scholar]
  • Geffroy B. & Bardonnet A., 2015. Sex differentiation and sex determination in eels: Consequences for management. Fish Fish. 17 (2), 375–398. DOI: 10.111/faf.12113. [CrossRef] [Google Scholar]
  • Gomes P. & Larinier M., 2008. Dommage subis par les anguilles lors de leur passage au travers des turbines Kaplan – Établissement de formules prédictives, Rep. No. RA 08.05. GHAAPPE. [Google Scholar]
  • Grativol C., Hemerly A.S. & Ferreira P.C.G., 2012. Genetic and epigenetic regulation of stress responses in natural plant populations. Biochim. Biophys. Acta – Gene Regul. Mech. 1819: 176–185. [CrossRef] [Google Scholar]
  • Harcourt J.L., Ang T.Z., Sweetman G., Johnstone R.A. & Manica A., 2009. Social feedback and the emergence of leaders and followers. Curr. Biol. 19: 248–252. [CrossRef] [PubMed] [Google Scholar]
  • Hasler C.T., Pon L.B., Roscoe D.W., Mossop B., Patterson D.A., Hinch S.G. & Cooke S.J., 2009. Expanding the “toolbox” for studying the biological responses of individual fish to hydropower infrastructure and operating strategies. Environ. Rev. 17: 179–197. DOI: 10.1139/A09-008. [Google Scholar]
  • Johansen I.B., Sørensen C., Sandvik G.K., Nilsson G.E., Höglund E., Bakken M. & Øverli O., 2012. Neural plasticity is affected by stress and heritable variation in stress coping style. Comp. Biochem. Physiol. Part D: Genom. Proteom. 7: 161–171. [Google Scholar]
  • Keiser C.N. & Pruitt J.N., 2014. Personality composition is more important than group size in determining collective foraging behaviour in the wild. Proc. Biol. Sci. 281 (1796), n° UNSP 20141424. DOI: 10.1098/rspb.2014.142. [Google Scholar]
  • King A.J., 2010. Follow me! I’m a leader if you do; I’m a failed initiator if you don’t? Behav. Proccesses. 84: 671–674. [CrossRef] [Google Scholar]
  • Koolhaas J.M., Korte S.M., De Boer S.F., Van Der Vegt B.J., Van Reenen C.G., Hopster H., De Jong I.C., Ruis M.A.W. & Blokhuis H.J., 1999. Coping styles in animals: Current status in behavior and stress- physiology. Neurosci. Biobehav. Rev. 23: 925–935. [Google Scholar]
  • Krueger W.H. & Oliveira K., 1999. Evidence for environmental sex determination in the American eel, Anguilla rostrata. Environ. Biol. Fish. 55: 381–389. [CrossRef] [Google Scholar]
  • Laporte M., Pavey S.A., Rougeux C., Pierron F., Lauzent M., Budzinski H., Labadie P., Geneste E., Couture P., Baudrimont M. & Bernatchez L., 2016. RAD-sequencing reveals within-generation polygenic selection in response to anthropogenic organic and metal contamination in North Atlantic Eels. Mol. Ecol. 25: 219–237. DOI: 10.1111/mec.13466. [CrossRef] [PubMed] [Google Scholar]
  • Larinier M., 2001. Environmental issues, dams and fish migrations. In: Dams, fish and fisheries: Opportunities, challenges and conflict resolution (G. Marmulla, Ed.), pp. 45–90. FAO Fisheries Technical Paper 419. [Google Scholar]
  • Larinier M. & Dartiguelongue J., 1989. La circulation des poissons migrateurs : le transit à travers les turbines des installations hydroélectriques. Bull. Fr. Pêch. Piscic. 3: 12–313, 1–90. [Google Scholar]
  • Le Page Y., Diotel N., Vaillant C., Pellegrini E., Anglade I., Mérot Y. & Kah O., 2010. Aromatase, brain sexualization and plasticity: The fish paradigm. Eur. J. Neurosci. 32: 2105–2115. [CrossRef] [PubMed] [Google Scholar]
  • Markov G., Yiǧit N., Çolak E., Kocheva M. & Gospodinova M., 2014. Intraspecific epigenetic polymorphism of the East European vole (Microtus levis Miller, 1908) in South-eastern Europe and Turkey. Biol. (Pol.) 69: 101–106. [Google Scholar]
  • Martinez M., Guderley H., Dutil J.D., Winger P.D., He P. & Walsh S.J., 2003. Condition, prolonged swimming performance and muscle metabolic capacities of cod Gadus morhua. J. Exp. Biol. 206: 503–511. [CrossRef] [PubMed] [Google Scholar]
  • McDowall R.M., 1988. Diadromy in fishes – Migration between freshwater and marine environments. London: Croom Helm. [Google Scholar]
  • McLaughlin R.L., Smyth E.R.B., Castro-Santos T., Jones M.L., Koops M.A., Pratt T.C. & Vélez-Espino L.A., 2012. Unintended consequences and trade-offs of fish passage. Fish Fish. 14: 580–604. [CrossRef] [Google Scholar]
  • Modlmeier A.P., Keiser C.N., Watters J.V., Sih A. & Pruitt J.N., 2014. The keystone individual concept: An ecological and evolutionary overview. Anim. Behav. 89: 53–62. [CrossRef] [Google Scholar]
  • Morange M., 2005. How to localize epigenetics in the landscape of biological research? Med./Sci. 21: 367–369. [Google Scholar]
  • Neildez-Nguyen T.M.A., Parisot A., Vignal C., Rameau P., Stockholm D., Picot J., Allo V., Le Bec C., Laplace C. & Paldi A., 2008. Epigenetic gene expression noise and phenotypic diversification of clonal cell populations. Differentiation 76: 33–40. [CrossRef] [PubMed] [Google Scholar]
  • Nicola G.G., Elvira B. & Almodovar A., 1996. Dams and fish passage facilities in the large rivers of Spain: effects on migratory species. Archiv für Hydrobiol. 113: 375–379. [Google Scholar]
  • Oliveira K. & McCleave J.D., 2000. Variation in population and life history traits of the American eel, Anguilla rostrata, in four rivers in Maine. Environ. Biol. Fish. 59: 141–151. [CrossRef] [Google Scholar]
  • Pavey S.A., Gaudin J., Normandeau E., Dionne M., Castonguay M., Audet C. & Bernatchez L., 2015. RAD sequencing highlights polygenic discrimination of habitat ecotypes in the panmictic American eel. Curr. Biol. 25: 1666–1671. [CrossRef] [PubMed] [Google Scholar]
  • Pelicice F.M. & Agostinho A.A., 2008. Fish-passage facilities as ecological traps in large neotropical rivers. Conserv. Biol. 22: 180–188. [CrossRef] [PubMed] [Google Scholar]
  • Pépino M., Rodríguez M.A. & Magnan P., 2012. Fish dispersal in fragmented landscapes: A modeling framework for quantifying the permeability of structural barriers. Ecol. Appl. 22: 1435–1445. [CrossRef] [PubMed] [Google Scholar]
  • Petit O. & Bon R., 2010. Decision-making processes: The case of collective movements. Behav. Processes 84: 635–647. [CrossRef] [PubMed] [Google Scholar]
  • Pillot M.H. & Deneubourg J.L., 2010. Collective movements, initiation and stops: Diversity of situations and law of parsimony. Behav. Processes 84: 657–661. [CrossRef] [PubMed] [Google Scholar]
  • Podgorniak T., 2016. Impact des obstacles aquatiques sur la migration des jeunes stades d’Anguilla anguilla. Thèse Écologie, Environnement. Université de Bordeaux. [Google Scholar]
  • Podgorniak T., Milan M., Pujolar J.M., de Oliveira E., Pierron F. & Daverat F., 2015a. Differences in brain gene transcription profiles advocate for an important role of cognitive function in upstream migration and water obstacles crossing in European eel. BMC Genomics 16: 378. [CrossRef] [PubMed] [Google Scholar]
  • Podgorniak T., Angelini A., Blanchet S., de Oliveira E., Pierron F. & Daverat F., 2015b. Climbing experience in glass eels: A cognitive task or a matter of physical capacities? Physiol. Behav. 151: 448–455. [CrossRef] [PubMed] [Google Scholar]
  • Podgorniak T., Blanchet S., De Oliveira E., Daverat F. & Pierron F, 2016. To boldly climb: behavioural and cognitive differences in migrating European glass eels. R. Soc. Open Sci. 3: 150655. DOI: 10.1098/rsos.150665. [CrossRef] [PubMed] [Google Scholar]
  • Pruitt J.N. & Keiser C.N., 2014. The personality types of key catalytic individuals shape colonies’ collective behaviour and success. Anim. Behav. 93: 87–95. [CrossRef] [Google Scholar]
  • Robertson B.A., Rehage J.S. & Sih A., 2013. Ecological novelty and the emergence of evolutionary traps. Trends Ecol. Evol. 28: 552–560. [CrossRef] [PubMed] [Google Scholar]
  • Travade F., 2005. Migratory fish passage at hydroelectric facilities: EDF experience. Houille Blanche: 60–68. [Google Scholar]
  • Travade F., Larinier M., Subra S., Gomes P. & De-Oliveira E., 2010. Behaviour and passage of European silver eels (Anguilla anguilla) at a small hydropower plant during their downstream migration. Knowl. Manag. Aquat. Ecosyst. 398, n° 01. DOI: 10.1051/kmae/2010022. [Google Scholar]
  • Ward J.V. & Stanford J.A., 1979. The ecology of regulated streams. New York: Plenum. [Google Scholar]
  • Wong R.Y., Lamm M.S. & Godwin J., 2015. Characterizing the neurotranscriptomic states in alternative stress coping styles. BMC Genomics 16, n° 425. DOI: 10.1186/s12864-015-1626-x. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.