Open Access
Issue
Hydroécol. Appl.
Volume 20, Mai 2018
Page(s) 57 - 84
DOI https://doi.org/10.1051/hydro/2017001
Published online 24 April 2018
  • Aglen A., 1989. Empirical results on precision-effort relationships for acoustic surveys. ICES CM B 30: 28 p. [Google Scholar]
  • Arrhenius F., Benneheij B.J., Rudstam, L.G. & Boisclair D., 2000. Can stationary bottom split-beam hydroacoustics be used to measure fish swimming speed in situ? Fish. Res. 45(1): 31–41. [CrossRef] [Google Scholar]
  • Auer N.A., 1999. Population characteristics and movements of lake sturgeon in the Sturgeon River and Lake Superior. J. Great Lakes Res. 25(2): 282–293. [CrossRef] [Google Scholar]
  • Baktoft H., Aarestrup K., Berg S., Boel M., Jacobsen L., Jepsen N., … & Skov C., 2012. Seasonal and diel effects on the activity of northern pike studied by high-resolution positional telemetry. Ecol. Freshw. Fish 21(3): 386–394. [Google Scholar]
  • Baldwin C.M. & McLellan J.G., 2008. Use of gill nets for target verification of a hydroacoustic fisheries survey and comparison with kokanee spawner escapement estimates from a tributary trap. North Am. J. Fish. Manage. 28(6): 1744–1757. [CrossRef] [Google Scholar]
  • Baldwin C.M. & Polacek M., 2011. Abundance and seasonal shifts in vertical and horizontal distribution of lake whitefish (Coregonus clupeaformis) in a western United States reservoir. J. Freshwater Ecol. 26(2): 171–183. [CrossRef] [Google Scholar]
  • Balk H., 2001. Development of hydroacoustic methods for fish detection in shallow water. PhD thesis, Faculty of Mathematics and Natural Science, University of Oslo, Norway, 309 p. [Google Scholar]
  • Balk H. & Lindem T., 2000. Improved fish detection in data from split-beam sonar. Aquat. Living Res. 13(5): 297–303. [CrossRef] [Google Scholar]
  • Balk H. & Lindem T., 2014. Sonar4 and Sonar5-Pro post processing systems, Operator manual version 6.0.3, 464 p. [Google Scholar]
  • Belcher E., Hanot W. & Burch J., 2002. Dual-frequency identification sonar (DID-SON). In: Underwater technology. Proceedings of the 2002 International Symposium on Underwater Technology, pp. 187–192. [Google Scholar]
  • Bevelhimer M.S. & Adams S.M., 1993. A bioenergetics analysis of diel vertical migration by kokanee salmon, Oncorhyn-chus nerka. Can. J. Fish. Aquat. Sci. 50(11): 2336–2349. [Google Scholar]
  • Binder T.R. & McDonald D.G., 2007. The role of dermal photoreceptors during the sea lamprey (Petromyzon marinus) spawning migration. Can. J. Fish. Aquat. Sci. 194(11): 921–928. [Google Scholar]
  • Bohl E., 1980. Diel pattern of pelagic distribution and feeding in planktivorous fish. Oecologia 44(3): 368–375. [CrossRef] [Google Scholar]
  • Bridger C.J. & Booth R.K., 2003. The effects of biotelemetry transmitter presence and attachment procedures on fish physiology and behavior. Rev. Fish. Sci. 11(3): 13–34. [CrossRef] [Google Scholar]
  • Brosse S., Dauba F., Oberdorff T. & Lek S., 1999a. Influence of some topographical variables on the spatial distribution of lake fish during summer stratification. Arch. Hydrobiol. 145(3): 359–371. [CrossRef] [Google Scholar]
  • Brosse S., Lek S. & Dauba F., 1999b. Predicting fish distribution in a mesotrophic lake by hydroacoustic survey and artificial neural networks. Limnol. Oceanogr. 44(5): 1293–1303. [CrossRef] [Google Scholar]
  • Busch S. & Mehner T., 2012. Size-dependent patterns of diel vertical migration: smaller fish may benefit from faster ascent. Behav. Ecol. 23(1): 210–217. [CrossRef] [Google Scholar]
  • Caroffino D.C., Sutton T.M. & Lindberg M.S., 2009. Abundance and movement patterns of age-0 juvenile lake sturgeon in the Peshtigo River, Wisconsin. Environ. Biol. Fish. 86(3): 411–422. [CrossRef] [Google Scholar]
  • Caswell N.M., Peterson D.L., Manny B.A. & Kennedy G.W., 2004. Spawning by lake sturgeon (Acipenser fulvescens) in the Detroit River. J. Appl. Ichthyol. 20(1): 1–6. [CrossRef] [Google Scholar]
  • Čech M. & Kubečka J., 2002. Sinusoidal cycling swimming pattern of reservoir fishes. J. Fish Biol. 61(2): 456–471. [CrossRef] [Google Scholar]
  • CEN, 2005. EN 14 757, CEN TC 230, Water quality – Sampling of fish with multimesh gillnets. European Committee for Standardization, Brussels. [Google Scholar]
  • Cerri R.D., 1983. The effect of light intensity on predator and prey behaviour in cyprinid fish: factors that influence prey risk. Anim. behav. 31(3): 736–742. [CrossRef] [Google Scholar]
  • Clark C.W. & Levy D.A., 1988. Diel vertical migrations by juvenile sockeye salmon and the antipredation window. Am. Nat. 131(2): 271–290. [CrossRef] [Google Scholar]
  • Cooke S.J., Hinch S.G., Lucas M.C. & Lutcavage M., 2012. Biotelemetry and biologging. In: Fisheries techniques, third edition. (A.V. Zale, D.L. Parrish, T.M. Sutton, Eds.), pp. 819–881. [Google Scholar]
  • Cooke S.J., Midwood J.D., Thiem J.D., Klimley P., Lucas M.C., Thorstad E.B., … & Ebner B.C., 2013. Tracking animals in freshwater with electronic tags: past, present and future. Anim. Biotelem. 1(5): 1–19. [Google Scholar]
  • Cooke S.J., Martins E.G., Struthers D.P., Gutowsky L.F., Power M., Doka S.E., … & Krueger C.C., 2016. A moving target– incorporating knowledge of the spatial ecology of fish into the assessment and management of freshwater fish populations. Environ. Monit. Assess. 188(4): 1–18. [Google Scholar]
  • Diehl S., 1988. Foraging efficiency of three freshwater fishes: effects of structural complexity and light. Oikos 53(2): 207–214. [CrossRef] [Google Scholar]
  • Djemali I., Toujani R. & Guillard J., 2009. Hydroacoustic fish biomass assessment in man-made lakes in Tunisia: horizontal beaming importance and diel effect. Aquat. Ecol. 43(4): 1121–1131. [CrossRef] [Google Scholar]
  • Dohet A. & Hoffmann L., 1995. Seasonal succession and spatial distribution of the zooplankton community in the reservoir of Esch-sur-Sûre (Luxembourg). Belg. J. Zool. 125: 109–123. [Google Scholar]
  • Draštík V., Kubečka J., Čech M., Frouzová J., Říha M., Jůza T., … & Vašek M., 2009. Hydroacoustic estimates of fish stocks in temperate reservoirs: day or night surveys? Aquat. Living Resour. 22(1): 69–77. [Google Scholar]
  • Draštík V., Guillard J., Godlewská M., Clabburn P., Hateley J., Kubečka J., Morrissey E., Winfield I.J., 2014. Intercalibration of different hydroacoustic systems for the assessment of fish populations in deep lakes and reservoirs: towards a method for lake fish monitoring within the WFD. Oral Communication– ECOFIL. 8–11 September 2014, Ceske Budejovice, Czech Republic. [Google Scholar]
  • Duncan A. & Kubečka J., 1993. Hydroacoustic Methods of Fish Surveys. National Rivers Authority, R&D Note 196, 136 p. [Google Scholar]
  • Duncan A. & Kubečka J., 1995. Land/water ecotone effects in reservoirs on the fish fauna. Hydrobiologia 105: 11–30. [CrossRef] [Google Scholar]
  • Dunlop E.S., Milne S.W., Ridgway M.S., Condiotty J. & Higginbottom I., 2010. In situ swimming behavior of lake trout observed using integrated multibeam acoustics and biotelemetry. Trans. Am. Fish. Soc. 139(2): 420–432. [Google Scholar]
  • Ebner B.C. & Thiem J.D., 2009. Monitoring by telemetry reveals differences in movement and survival following hatchery or wild rearing of an endangered fish. Mar. Fresh. Res. 60(1): 45–57. [CrossRef] [Google Scholar]
  • Eklov P. & VanKooten T 2001. Facilitation among piscivorous predators: effects of prey habitat use. Ecology 82(9), 2486–2494. [Google Scholar]
  • Emmrich M., Winfied I.J., Guillard J., Rustadbakken A., Vergès C., Volta P., Jeppesen E., Lauridsen T., Holmgren K., Argillier C. & Mehner T., 2012. Strong correspondence between gillnet catch per unit effort and hydroacoustically derived fish biomass in stratifiedlakes. Freshw. Biol. 57(12): 2436–2448. [CrossRef] [Google Scholar]
  • Eriksson L.O., 1978. Nocturnalism versus diurnalism: dualism within fish individuals. In: Rhythmic activity of fishes (J.E. Thorpe, Ed.), pp. 69–89. [Google Scholar]
  • Fernandes-Rosado M.J. & Lucena J., 2001. Space-time heterogeneities of the zooplankton distribution in La Concepcion reservoir (Istan, Malaga; Spain). Hydrobiologia 455(1–3): 157–170. [CrossRef] [Google Scholar]
  • Fernandes-Rosado M.J., Lucena K. & Niell F.X., 1994. Space-time heterogeneity of the chlorophyll - a distribution in La Concepcion reservoir (Istan, Malaga). Representative models. Arch. Hydrobiol. 129(3): 311–325. [Google Scholar]
  • Fernando C.H. & Holčík J., 1991. Fish in reservoirs. Intern. Revue Hydrobiol. Hydrogr. 76(2): 149–167. [CrossRef] [Google Scholar]
  • Foote K., Knudsen H., Vestnes G., MacLennan D. & Simmonds E., 1987. Calibration of acoustic instruments for fish density estimation. ICES Cooperative Report. 144: 1–70. [Google Scholar]
  • Frouzová J., Kubečka J., Balk H. & Frouz J., 2005. Target strength of some European fish species and its dependence on fish body parameters. Fish. Res. 75(1): 86–96. [CrossRef] [Google Scholar]
  • Fry F.E.J., 1971. The effect of environmental factors on the physiology of fish. Fish physiol. 6: 1–98. [CrossRef] [Google Scholar]
  • Gaudreau N. & Boisclair D., 1998. The influence of spatial heterogeneity on the study of fish horizontal daily migration. Fish. Res. 35(1): 65–73. [CrossRef] [Google Scholar]
  • Gillet C., 2001. Le déroulement de la fraie des principaux poissons lacustres. Dans : Gestion piscicole des grands plans d’eau (D. Gerdeaux Ed.), pp. 241–281. [Google Scholar]
  • Gilliam J.F. & Fraser D.F., 2001. Movement in corridors: enhancement by predation threat, disturbance, and habitat structure. Ecology 82(1): 258–273. [CrossRef] [Google Scholar]
  • Gjelland K.O. & Hedger R.D., 2013. Environmental influence on transmitter detection probability in biotelemetry: developing a general model of acoustic transmission. Methods Ecol. Evol. 4(7): 665–674. [CrossRef] [Google Scholar]
  • Gliwicz Z.M., Slon J. & Szynkarczyk I., 2006. Trading safety for food: evidence from gut contents in roach and bleak captured at different distances offshore from their daytime littoral refuge. Freshw. Biol. 51(5): 823–839. [CrossRef] [Google Scholar]
  • Godlewská M., Colon M., Jozwik A., Guillard J., 2011. How pulse lengths impact fish stock estimations during hydroacoustic measurements at 70 kHz. Aquat. Living Res. 24(1): 71–78. [CrossRef] [Google Scholar]
  • Godlewská M., Frouzová J., Kubečka J., Wiśniewolski W. & Szlakowski J., 2012. Comparison of hydroacoustic estimates with fish census in shallow Malta Reservoir – which TS/L regression to use in horizontal beam applications? Fish. Res. 123: 90–97. [CrossRef] [Google Scholar]
  • Grimardias D., Guillard J. & Cattanéo F., 2017. Drawdown flushing of a hydroelectric reservoir on the Rhône River: impacts on the fish community and implications for the sediment management of large dams. J. Environ. Manage., in press. [Google Scholar]
  • Guillard J. & Vergès C., 2007. The Repeatability of Fish Biomass and Size Distribution Estimates obtained by Hydroacoustic Surveys Using Various Survey Designs and Statistical Analyses. Int. Rev. Hydrobiol. 92(6): 605–617. [CrossRef] [Google Scholar]
  • Guillard J., Perga M.E., Colon M. & Angeli N., 2006. Hydroacoustic assessment of young-of-year perch, Perca fluviatilis, population dynamics in an oligotrophic lake (Lake Annecy, France). Fish. Manage. Ecol. 13(5): 319–327. [CrossRef] [Google Scholar]
  • Heupel M.R., Semmens J.M. & Hobday A.J., 2006. Automated acoustic tracking of aquatic animals: scales, design and deployment of listening station arrays. Mar. Fresh. Res. 57(1): 1–13. [CrossRef] [Google Scholar]
  • Horppila J., Ruuhijarvi J., Rask M., Karppinen C., Nyberg K. & Olin M., 2000. Seasonal changes in the diets and relative abundances of perch and roach in the littoral and pelagic zones of a large lake. J. Fish Biol. 56(1): 51–72. [CrossRef] [Google Scholar]
  • Hussey N.E., Kessel S.T., Aarestrup K., Cooke S.J., Cowley P.D., Fisk A.T., … & Flemming J.E.M., 2015. Aquatic animal telemetry: a panoramic window into the underwater world. Science 348(6240): 1255642. [Google Scholar]
  • Imbrock F., Appenzeller A. & Eckmann R., 1996. Diel and seasonal distribution of perch in Lake Constance: a hydroacoustic study and in situ observations. J. Fish Biol. 49(1): 1–13. [Google Scholar]
  • Jacobsen L., Berg S., Jepsen N. & Skov C., 2004. Does roach behaviour differ between shallow lakes of different environmental state? J. Fish Biol. 65(1): 135–147. [CrossRef] [Google Scholar]
  • Jàrvalt A., Krause T. & Palm A., 2005. Diel migration and spatial distribution of fish in a small stratified lake. Hydrobiologia 547: 197–203. [CrossRef] [Google Scholar]
  • Jurajda P. & Regenda J., 2004. Littoral 0+ fish assemblages in three reservoirs of the Nove Mlyny dam (Czech Republic). Czech J. Anim. Sci. 49(10): 450–457. [CrossRef] [Google Scholar]
  • Kahl U. & Radke R.J., 2006. Habitat and food resource use of perch and roach in a deep mesotrophic reservoir: enough space to avoid competition? Ecol. Freshw. Fish. 15(1): 48–56. [CrossRef] [Google Scholar]
  • Kessel S.T., Cooke S.J., Heupel M.R., Hussey N.E., Simpfendorfer C.A., Vagle S. & Fisk A.T., 2014. A review of detection range testing in aquatic passive acoustic telemetry studies. Rev. Fish. Biol. Fish. 24(1): 199–218. [CrossRef] [Google Scholar]
  • Kessel S.T., Hussey N.E., Webber D.M., Gruber S.H., Young J.M., Smale M.J. & Fisk A.T., 2015. Close proximity detection interference with acoustic telemetry: the importance of considering tag power output in low ambient noise environments. Anim. Biotelem. 3(1): 5. [CrossRef] [Google Scholar]
  • Klimley A.P., Voegeli F., Beavers S.C. & Le Boeuf B.J., 1998. Automated listening stations for tagged marine fishes. Marine Technology Society. Mar. Technol. Soc. J. 32(1): 94. [Google Scholar]
  • Knudsen F.R. & Sægrov H., 2002. Benefits from horizontal beaming during acoustic survey: application to three Norwegian lakes. Fish. Res. 56(2): 205–211. [CrossRef] [Google Scholar]
  • Kratochvil M., Čech. M., Vašek M., Kubečka J., Hejzlar J., Matëna J., … & Jarolím S.E.D.A., 2010. Diel vertical migrations of age 0+ percids in a shallow, well-mixed reservoir. J. Limnol. 69(2): 305–310. [Google Scholar]
  • Kubečka J., 1993. Night inshore migration and capture of adult fish by shore seining. Aquacult. Fish. Manage. 24(5): 685–689. [Google Scholar]
  • Kubečka J. & Duncan A., 1998. Diurnal changes of fish behaviour in a lowland river monitored by a dual-beam echosounder. Fish. Res. 35(1): 55–63. [CrossRef] [Google Scholar]
  • Kubečka J. & Wittingerova M., 1998. Horizontal beaming as a crucial component of acoustic fish stock assessment in freshwater reservoirs. Fish. Res. 35(1): 99–106. [CrossRef] [Google Scholar]
  • Kubečka J., Frouzová J., Balk H., Čech M., Draštík V. & Prchalová M., 2009. Regressions for conversion between target strength and fish length in horizontal acoustic surveys. In: Underwater acoustic measurements, Technologies & Results (J.S. Papadakis, L. Bjorno, Eds.), pp. 1039–1044. Heraklion, Greece: Foundation for Research & Technology. [Google Scholar]
  • Lewin W.C., Okun N. & Mehner T., 2004. Determinants of the distribution of juvenile fish in the littoral area of a shallow lake. Freshw. Biol. 49(4): 410–424. [CrossRef] [Google Scholar]
  • Love R.H., 1971. Dorsal-aspect target strength of an individual fish. J. Acoust. Soc. Am. 49(3B): 816–823. [CrossRef] [Google Scholar]
  • Love R.H., 1977. Target strength of an individual fish from any aspect. J. Acoust. Soc. Am. 62(6): 1397–1403. [CrossRef] [Google Scholar]
  • Lucas M.C. & Baras E., 2000. Methods for studying spatial behaviour of freshwater fishes in the natural environment. Fish Fish. 1(4): 283–316. [CrossRef] [Google Scholar]
  • Lucas M.C., Baras E., Thom T.J., Duncan A. & Slavi’k O., 2001. Migration of freshwater fishes. Oxford: Blackwell Science, 420 p. [Google Scholar]
  • Lyons J. & Lucas M.C., 2002. The combined use of acoustic tracking and echosounding to investigate the movement and distribution of common bream (Abramis brama) in the River Trent, England. Hydrobiologia 483(1–3): 265–273. [CrossRef] [Google Scholar]
  • McCauley M.M., Cerrato R.M., Sclafani M. & Frisk M.G., 2014. Diel behavior in white perch revealed using acoustic telemetry. Trans. Am. Fish. Soc. 143(5): 1330–1340. [CrossRef] [Google Scholar]
  • McGrath K.J., Ault S., Reid K., Stanley D. & Voegeli F., 2003. Development of hydrosonic telemetry technologies suitable for tracking American eel movements in the vicinity of a large hydroelectric project. Am. Fish. S. S. 33: 329–341. [Google Scholar]
  • Mehner T., 2012. Diel vertical migration of freshwater fishes-proximate triggers, ultimate causes and research perspectives. Freshw. Biol. 57(7): 1342–1359. [CrossRef] [Google Scholar]
  • Mehner T. & Kasprzak P., 2011. Partial diel vertical migrations in pelagic fish. J. Anim. Ecol. 80(4): 761–770. [CrossRef] [PubMed] [Google Scholar]
  • Mehner T., Diekmann M., Bramick U. & Lemcke R., 2005. Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human-use intensity. Freshw. Biol. 50(1): 70–85. [CrossRef] [Google Scholar]
  • Mehner T., Busch S., Helland I.P., Emmrich M. & Freyhof J., 2010. Temperature-related nocturnal vertical segregation of coexisting coregonids. Ecol. Freshw. Fish. 19(3): 408–419. [CrossRef] [Google Scholar]
  • Muška M., Tušer M., Frouzová J., Draštík V., Čech M., Jůza T., … & Říha M., 2013. To migrate, or not to migrate: partial diel horizontal migration of fish in a temperate freshwater reservoir. Hydrobiologia 707(1): 17–28. [Google Scholar]
  • Neverman D. & Wurtsbaugh W.A., 1994. The thermoregulatory function of diel vertical migration for a juvenile fish, Cottus extensus. Oecologia 98(3–4): 247–256. [CrossRef] [PubMed] [Google Scholar]
  • Ohlberger J., Staaks G., Petzoldt T., Mehner T. & Holker F., 2008. Physiological specialization by thermal adaptation drives ecological divergence in a sympatric fish species pair. Evol. Ecol. Res. 10(8): 1173–1185. [Google Scholar]
  • Ottera H. & Skilbrei O.T., 2016. Influence of depth, time and human activity on detection rate of acoustic tags: a case study on two fish farms. J. Fish Biol. 88(3): 1229–1235. [CrossRef] [PubMed] [Google Scholar]
  • Parker A.D., Stepie, C.A., Sepulveda-Villet O.J., Ruehl C.B. & Uzarski D.G., 2009. The interplay of morphology, habitat, resource use, and genetic relationships in young yellow perch. Trans. Am. Fish. Soc. 138(4): 899–914. [CrossRef] [Google Scholar]
  • Parkinson E.A., Rieman B.E. & Rudstam L.G., 1994. Comparison of acoustic and trawl methods for estimating density and age composition of Kokanee. Trans. Am. Fish. Soc. 123(6): 841–854. [CrossRef] [Google Scholar]
  • Persson L., 1986. Temperature-induced shift in foraging ability in two fish species, roach (Rutilus rutilus) and perch (Perca fluviatilis): implications for coexistence between poikilotherms. J. Animal. Ecol. 55(3): 829–839. [CrossRef] [Google Scholar]
  • Pont D. & Amrani J., 1990. The effects of selective fish predation on the horizontal distribution of pelagic Cladocera in a southern French reservoir. Hydrobiologia 207(1): 259–267. [CrossRef] [Google Scholar]
  • Portner H.O. & Farrell A.P., 2008. Physiology and climate change. Science 322(5902): 690–692. [CrossRef] [PubMed] [Google Scholar]
  • Prado I.G. & Pompeu P.S., 2014. Vertical and seasonal distribution of fish in Três Marias reservoir. Lake Reser. Manage. 30(4): 393–404. [CrossRef] [Google Scholar]
  • Prchalová M., Draštík V., Kubečka J., Sricharoendham B., Schiemer F. & Vijverberg J., 2003. Acoustic study of fish and invertebrate behavior in a tropical reservoir. Aquat. Living Res. 16(3): 325–331. [CrossRef] [Google Scholar]
  • Prchalová M., Kubečka J., Vašek M., Peterka J., Sed’a J., Jiiza T., … & Čech M., 2008. Distribution patterns of fishes in a canyon-shaped reservoir. J. Fish Biol. 73(1): 54–78. [Google Scholar]
  • R Development Core Team, 2016. R version 3.3.1. R Project for Statistical Computing. Vienna, Austria. www.r-project.org. [Google Scholar]
  • Radke R.J. & Gaupisch A., 2005. Effects of phytoplankton-induced turbidity on predation success of piscivorous Eurasian perch (Perca fluviatilis): possible implications for fish community structure in lakes. Naturwissenschaften 92(2): 91–94. [CrossRef] [PubMed] [Google Scholar]
  • Rakowitz G., Herold W., Fesl C., Keckeis H., Kubečka J. & Balk H., 2008. Two methods to improve the accuracy of target - strength estimates for horizontal beaming. Fish. Res. 9 (3): 324–331. [CrossRef] [Google Scholar]
  • Renard D. & Bez N., 2005. RGeoS: geostatistical package. R package. Version 2.1. Fontainebleau, France : Centre de Géostatistique, École des Mines de Paris. [Google Scholar]
  • Říha M., Kubečka J., Prchalová M., Mrkvička T., Čech M., Draštík V., … & Peterka J., 2011. The influence of diel period on fish assemblage in the unstructured littoral of reservoirs. Fish. Manage. Ecol. 18(4): 339–347. [Google Scholar]
  • Říha M., Ricard D., Vašek M., Prchalová M., Mrkvička T., Jiiza T., … & Peterka J., 2015. Patterns in diel habitat use of fish covering the littoral and pelagic zones in a reservoir. Hydrobiologia 747(1): 111–131. [Google Scholar]
  • Romare P., Berg S., Lauridsen T. & Jeppesen E., 2003. Spatial and temporal distribution of fish and zooplankton in a shallow lake. Freshw. Biol. 48(8): 1353–1362. [CrossRef] [Google Scholar]
  • Roy R., 2014. Distribution spatiale et activité des poissons en milieu lacustre– Impacts des facteurs environnementaux à partir d’une approche multi-échelle. Application à la retenue des Bariousses. PhD thesis, Aix-Marseille. 224 p. [Google Scholar]
  • Roy R., Beguin J., Argillier C., Tissot L., Smith F., Smedbol S. & De-Oliveira E., 2014. Testing the VEMCO Positioning System: spatial distribution of the probability of location and the positioning error in a reservoir. Anim. Biotelem. 2(1): 1–6. [CrossRef] [Google Scholar]
  • Rudstam L.G., Jech J.M., Parker-Stetter S.L., Horne J.K., Sullivan P.J. & Mason D. M., 2012. Fisheries acoustics. In: Fisheries techniques, third edition (A.V. Zale, D.L. Parrish, T.M. Sutton, Eds.), pp. 597–636. [Google Scholar]
  • Savino J.F. & Stein R.A., 1989. Behavioural interactions between fish predators and their prey: effects of plant density. Anim. behav. 37: 311–321. [CrossRef] [Google Scholar]
  • Siler J.R., Foris W.J. & McInerny M.C., 1986. Spatial heterogeneity in fish parameters within a reservoir. In: Reservoir Fisheries Management: Strategies for the 80’s (G.E. Hall, M.J. Van Den Avyle, Eds), pp. 122–136. [Google Scholar]
  • Simmonds E.J. & MacLennan D.N. 2005. Fisheries Acoustics: Theory and Practice. Oxford: Blackwell Science Ltd, 437 p. [Google Scholar]
  • Smith F., 2013. Understanding HPE in the VPS Telemetry System. VEMCO Tutorials. [Google Scholar]
  • Smith J.A., Baumgartner L.J., Suthers I.M. & Taylor M.D., 2011. Distribution and movement of a stocked freshwater fish: implications of a variable habitat volume for stocking programs. Mar. Fresh. Res. 62(11): 1342–1353. [Google Scholar]
  • Straskraba M., 1998. Limnological differences between deep valley reservoirs and deep lakes. Int. Rev. Hydrobiol. 83: 1–12. [CrossRef] [Google Scholar]
  • Świerzowski A., Godlewská M. & Pottorak T., 2000. The relationship between the spatial distribution of fish, zooplankton and other environmental parameters in the Solina reservoir, Poland. Aquat. Living Resour. 13(5): 373–377. [Google Scholar]
  • Tukey J.W., 1977. Exploratory Data Analysis. Reading, PA: Addison-Wesley, 688 p. [Google Scholar]
  • Tušer M., Kubečka J., Frouzová J. & Jarolím O., 2009. Fish orientation along the longitudinal profile of the Rímov reservoir during daytime: Consequences for horizontal acoustic surveys. Fish. Res. 96(1): 23–29. [CrossRef] [Google Scholar]
  • Urabe J., 1989. Relative importance of temporal and spatial heterogeneity in the zooplankton community of an artificial reservoir. Hydrobiologia 184(1): 1–6. [CrossRef] [Google Scholar]
  • Urabe J., 1990. Stable horizontal variation in the zooplankton community structure of a reservoir maintained by predation and competition. Limnol. Oceanogr. 35(8): 1703–1717. [CrossRef] [Google Scholar]
  • Vašek M., Kubečka J. & Sed’a J., 2003. Cyprinid predation on zooplankton along the longitudinal profile of a canyon-shaped reservoir. Arch. Hydrobiol. 156(4): 535–550. [CrossRef] [Google Scholar]
  • Vašek M., Kubečka J., Peterka J., Čech M., Draštík V., Hladík M., … & Frouzová J., 2004. Longitudinal and Vertical Spatial Gradients in the Distribution of Fish within a Canyon-shaped Reservoir. Int. Rev. Hydrobiol. 89(4): 352–362. [Google Scholar]
  • Vašek M., Kubečka J., Matěna J. & Sed’a J., 2006. Distribution and Diet of 0+ Fish within a Canyon-Shaped European Reservoir in Late Summer. Int. Rev. Hydrobiol. 91(2): 178–194. [CrossRef] [Google Scholar]
  • Vašek, M., Prchalová M., Říha M., Blabolil P., Čech M., Draštík V., … & Peterka J., 2016. Fish community response to the longitudinal environmental gradient in Czech deep-valley reservoirs: implications for ecological monitoring and management. Ecol. Indic. 63: 219–230. [Google Scholar]
  • Winfield I.J., Fletcher J.M., James J.B. & Bean C.W., 2009. Assessment of fish populations in still waters using hydroacoustics and survey gill netting: experiences with Arctic charr (Salvelinus alpinus) in the UK. Fish. Res. 96(1): 30–38. [CrossRef] [Google Scholar]
  • Wurtsbaugh W.A. & Neverman D., 1988. Post-feeding thermotaxis and daily vertical migration in a larval fish. Nature 333(6176): 846–848. [Google Scholar]
  • Ye S., Lian Y., Godlewská M., Liu J. & Li Z., 2013. Day-night differences in hydroacoustic estimates of fish abundance and distribution in Lake Laojianghe, China. J. Appl. Ichthyol. 29(6): 1423–1429. [CrossRef] [Google Scholar]
  • Yule D.L., 2000. Comparison of horizontal acoustic and purse-seine estimates of salmonid densities and sizes in eleven Wyoming waters. North Am. J. Fish. Manage. 20(3): 759–775. [Google Scholar]
  • Yule D., Evrard L.M, Cachera S., Colon M. & Guillard J., 2013. Comparing two fish sampling standards over time: largely congruent results but with caveats. Freshw. Biol. 58(10): 2074–2088. [CrossRef] [Google Scholar]
  • Zamora L. & Moreno-Amich R., 2002. Quantifying the activity and movement of perch in a temperate lake by integrating acoustic telemetry and a geographic information system. Hydrobiologia 483: 209–218. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.