Open Access
Issue
Hydroécol. Appl.
Volume 19, 2016
Page(s) 173 - 195
DOI https://doi.org/10.1051/hydro/2015006
Published online 02 October 2015
  • AFNOR, 2006. EN 15204 - Water quality - Guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique). Afnor : 1-39. [Google Scholar]
  • American Public Health Association (APHA), 1995. Standard Methods for Examination of Water and Wastewater, 19th ed. APHA, Washington DC, USA. [Google Scholar]
  • American Society of Limnology and Oceanography (ASLO), 1990. Large-scale variability and interactions among phytoplankton, bacterioplankton, and phosphorus. Limnol. Oceanogr. 35(7) : 1437-1455. [CrossRef] [Google Scholar]
  • Anneville O., Kaiblinger C., Tadonléké R., Druart J.-C. & Dokulil M.T., 2008. Contribution of long-term monitoring to the European Water Framework Directive implementation. In: Sengupta M. & Dalwani R. (Eds.), The 12th World Lake Conference, Ministry of Environment & Forests, New Delhi, India, 1122–1131. [Google Scholar]
  • Becker V., Caputo L., Ordõnez J., Marce R., Armengol J., Crossetti L.O. & Huszar V.L.M., 2010. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Res. 44 : 3345-3354. [CrossRef] [PubMed] [Google Scholar]
  • Bourrelly, 1981. Les algues d’eau douce : Les algues jaunes et brunes. In: Boubée N. (Ed.), Paris. [Google Scholar]
  • Bourrelly, 1985. Les algues d’eau douce : Les algues bleues et rouges. In: Boubée N. (Ed.), Paris. [Google Scholar]
  • Bourrelly, 1990. Les algues d’eau douce : Les algues vertes. In: Boubée N. (Ed.), Paris. [Google Scholar]
  • Brettum, 1989. Alger som indicator pa vannkvalitet i norske innsjøer, Planteplankton, NIVA, Trondheim, Norway. [Google Scholar]
  • Büsing N., 1998. Seasonality of phytoplankton as an indicator of trophic status of the large perialpine ‘Lago di Garda’. Hydrobiologia 369/370 : 153-162. [CrossRef] [Google Scholar]
  • Calijuri M.C. & Dos Santos A.C.A., 2001. Temporal variations in phytoplankton primary production in a tropical reservoir (Barra Bonita, SP – Brazil). Hydrobiologia 445 : 11-26. [CrossRef] [Google Scholar]
  • Calijuri M.C., Dos Santos A.C.A. & Jati S., 2002. Temporal changes in the phytoplankton community in the Barra Bonita reservoir (São Paulo, Brazil). Hydrobiologia 24 : 617-634. [Google Scholar]
  • Catalan J., Ventura M., Munné A. & Godé L., 2003. Desenvolupament d’un index integral de qualitat ecologica i regionalitzacio ambiental dels sistemes lacustres de Catalunya, Agencia Catalana del Aigua, Generalitat de Catalunya, Spain. [Google Scholar]
  • Chanudet V., Descloux S., Harby A., Sundt H., Hansen B.H., Brakstad O., Serca D. & Guerin F., 2011. Gross CO2 and CH4 emissions from the Nam Ngum and Nam Leuk sub-tropical reservoirs in Lao PDR. Science of the Total Environment 409 : 5382-5391. [CrossRef] [Google Scholar]
  • Chanudet V., Fabre V. & Van Der Kaaij T., 2012. Application of a three-dimensional hydrodynamic model to the Nam Theun 2 Reservoir (Lao PDR). J. Great Lakes Res. 38 : 260-269. [CrossRef] [Google Scholar]
  • Chanudet V., Smits J., Van Beek J., Boderie P., Guérin F., Serça D., Deshmukh C. & Descloux S., 2014. Hydrodynamic and water quality 3D modelling of the Nam Theun 2 Reservoir (Lao PDR): predictions and results of scenarios related to reservoir management, hydrometeorology and nutrient input. Hydroécol. Appl. 19 ( same issue). [Google Scholar]
  • Codd G.A., Lindsay J., Young F.M., Morrison L.F. & Metcalf J., 2005. From mass mortalities to management measures. In: Huisman J., Matthijs H.C.P. & Visser P.M. (Eds.), Harmful Cyanobacteria 1-23. [Google Scholar]
  • Crossetti L.O. & Bicudo C.E.M., 2005. Structural and functional phytoplankton responses to nutrient impoverishment in mesocosms placed in a shallow eutrophic reservoir (Garcas Pond), Sao Paulo, Brazil. Hydrobiologia 541 : 71-85. [CrossRef] [Google Scholar]
  • Crossetti L.O. & Bicudo C.E.M., 2008. Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Garças Pond): the assemblage index application. Hydrobiologia 610 : 161-173. [CrossRef] [Google Scholar]
  • Dai H., Zheng T. & Liu D., 2010. Effects of Reservoir Impounding on Key Ecological Factors in the Three Gorges Region. Procedia Environ. Sci. 2 : 15-24. [CrossRef] [Google Scholar]
  • Descloux S., Guédant P., Phommachanh D. & Luthi R., 2014. Main features of the Nam Theun 2 hydroelectric project (Lao PDR) and the associated environmental monitoring programs. Hydroécol. Appl. 19 (same issue). [Google Scholar]
  • Díaz-Pardo E., Vazquez G. & López-López E., 1998. The phytoplankton community as a bioindicator of health conditions of Atezca Lake, Mexico. Aquat. Ecosyst. Health Manag. 3 : 257-266. [Google Scholar]
  • Dos Santos A.C.A & Calijuri M.C. 1998 - Survival strategies of some species of the phytoplankton community in the Barra Bonita reservoir (São Paulo, Brazil). Hydrobiologia, 367: 139-152. [CrossRef] [Google Scholar]
  • European Community Parliament and Council, 2000 - Directive of the European Parliament and ofthe Council 200/60/EC establishing a framework for community action in the field of water policy. European Commission PE-CONS 3639/1/100. Rev 1, Luxembourg. [Google Scholar]
  • Feinpend L., Zhang H., Zhu Y., Xiao Y. & Chen L., 2013. Effect of flow velocity on phytoplankton biomass and composition in a freshwater lake. Science of the Total Environment 447 : 64-71. [CrossRef] [Google Scholar]
  • Gerrath J.F., 1993. The biology of Desmids: a decade of progress. In: Round F.E. & Chapman D.J. (Eds.), Progress in phycological research, Bristol, 79-192. [Google Scholar]
  • Han B.P., Armengol J., Garcia J.C., Comerma M., Roura M., Dolz J. & Straskraba M., 2000. The thermal structure of Sau Reservoir (NE: Spain): a simulation approach. Ecol. Model. 125 : 109-122. [CrossRef] [Google Scholar]
  • Happey-Wood C.M., 1988. Ecology of freshwater planktonic green algae. In: Sandgren C.D. (Ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton, Cambridge University Press, Cambridge 175-226. [Google Scholar]
  • Harris G.P., 1986. Phytoplankton Ecology: Structure, Function and Fluctuation. Chapman and Hall, New York, 384 p. [Google Scholar]
  • Harris G.P. & Baxter G., 1996. Interannual variability in phytoplankton biomass and species composition in a subtropical reservoir. Freshwater Biology 35 : 545-560. [CrossRef] [Google Scholar]
  • Henry R., 1999. Heat budgets, thermal structure and dissolved oxygen in Brazilian reservoirs. In: Tundisi J.G. & Straskraba M. (Eds.), Theoretical reservoir ecology and its applications. International Institute of Ecology, Backhuys Publishers, São Carlos, 125-151. [Google Scholar]
  • Hillebrand H., Dürselen C.D., Kirschtel D., Pollingher U. & Zohary T., 1999. Biovolume calculation for pelgic and benthic microalgae. J. Phycol. 35 : 403-424. [CrossRef] [Google Scholar]
  • Hindák, 1984. Studies on chlorococcal algae (Chlorophyceae) III. Biologicke Práce, Veda, Bratislava. [Google Scholar]
  • Hindák, 1988. Studies on chlorococcal algae (Chlorophyceae) IV. Biologicke Práce, Veda, Bratislava. [Google Scholar]
  • Hindák, 1990. Studies on chlorococcal algae (Chlorophyceae) V. Biologicke Práce, Veda, Bratislava. [Google Scholar]
  • Huszar V.L.M., Silva L.H.S., Domingos P., Marinho M. & Melo S., 1998. Phytoplankton species composition is more sensitive than OECD criteria to the trophic status of three Brazilian tropical lakes. Hydrobiologia : 59-71. [Google Scholar]
  • León López N., Rivera Rondón C.A., Zapata Á., Jimenez J., Villamil W., Arenas G., Rincón C. & Sánchez T., 2012. Factors controlling phytoplankton in tropical high-mountain drinking-water reservoirs. Limnetica 31(2) : 305-322. [Google Scholar]
  • Lewis W.M.J., 2000. Basis for the protection and management of tropical lakes. Lakes and Reservoirs: Res. Manage. 5 : 35-48. [CrossRef] [Google Scholar]
  • Malaiwan T. & Peerapornpisal Y., 2009. Diversity of phytoplankton and water quality in the reservoir of Nam Ngum dam, Lao PDR. KKU Sci. J. (Suppl.) 37 : 42-49. [Google Scholar]
  • Martinet J., Descloux S., Guédant P. & Rimet F., 2014. Phytoplankton functional groups for ecological assessment in young sub-tropical reservoirs: case study of the Nam-Theun 2 Reservoir (Lao PDR, South-East Asia). J. Limno. 73(3) : 536-550. [CrossRef] [Google Scholar]
  • Melo S. & Huszar V.L.M., 2000. Phytoplankton in an Amazonian flood plain lake (lago Batata, Brasil): diel variation and species strategies. J. Plankton Res. 22 : 63-76. [CrossRef] [Google Scholar]
  • Molina Navarro E., Martinez-Perez S., Sastre-Merlin A., Verdugo-Althlöfer M. & Padisák J., 2014. Phytoplankton and suitability of derived metrics for assessing the ecological status in a limno-reservoir, a Water Framework Directive nondefined type of Mediterranean waterbody. Lake Reserv. Manage. 30 : 46-62. [CrossRef] [Google Scholar]
  • Naselli Flores L., 2000. Phytoplankton assemblage in twenty-one Sicilian reservoirs: relationships between species composition and environmental factors. Hydrobiologia 424 : 1-11. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Naselli Flores L. & Barone R., 1998. Phytoplankton dynamics in two reservoirs with different trophic state (Lake Rosamarina and Lake Arancio, Sicily, Italy). Hydrobiologia 163-178. [Google Scholar]
  • OECD, 1982. Eutrophication of waters, monitoring, assessment and control. Organization of Economic Cooperation and Development, Paris, France. [Google Scholar]
  • Oishi M.K., 1996. Caracterização do meio físico, das características físicas e químicas e do fluxo de nutrientes em tributários da bacia hidrográfica do reservatório de Barra Bonita (Médio Tietê, SP), São Carlos, Brazil, 199 p. [Google Scholar]
  • Padisák J., 2003. Phytoplankton. In: O’Sullivan P.E. & Reynolds C.S. (Eds.), The Lakes Handbook 1. Li mnology and Limnetic Ecology. Blackwell Science Ltd., Oxford, 251-308. [Google Scholar]
  • Padisák J., Borics G., Grigorskzky I., Soróczki-Pintér É., 2006. Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive: the assemblage index. Hydrobiologia 502 : 157-168. [CrossRef] [Google Scholar]
  • Padisák J., Crossetti L.O. & Naselli-Flores L., 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621 : 1-19. [CrossRef] [Google Scholar]
  • Peerapornpisal Y., Chaiubol C., Pekkoh J., Kraibut H., Chorum M., Wannathong P., Ngernpat N., Jusakul K., Thammathiwat A., Chuananta J. & Inthasotti T., 2004. The monitoring of water quality in ang kaew reservior of Chaing Mai University by using phytoplankton as bioindicator from 1995-2002. Chiang Mai J. Sci. 31(1) : 85-94. [Google Scholar]
  • Peerapornpisal Y., Pekkoh J., Powangprasit J., Tonkhamdee T., Hongsirichat A. & Kunpradid T., 2007. Assessment of water quality in standing water by using dominant phytoplankton (AARL – PP Score). J. Fish. Tech. Res. 1(1) : 71-81. [Google Scholar]
  • Poikane S., 2009. Lakes. In: Water Framework Directive intercalibration technical report. Office for Official Publications of the European Communities, Luxembourg. [Google Scholar]
  • Poikane S., Van der Berg M., Hellsten S., de Hoyos C., Ortiz-Casas J., Pall K., Portielje R., Phillips G., Solheim A.L., Tierney D., Wolfram G. & Van de Bund W., 2011. Lake ecological assessment systems and intercalibration for the European Water Framework Directive: aims, achievements and further challenges. Pro. Env. 9 : 153-168. [CrossRef] [Google Scholar]
  • Reynolds C.S., 1984. The ecology of freshwater plankton. Cambridge University Press, New York, USA. [Google Scholar]
  • Reynolds C.S., 1997. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Ecology Institute, Oldendorf/Luhe, Germany. [Google Scholar]
  • Reynolds C.S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status. Hydrobiologia 369-370 : 11-26. [CrossRef] [Google Scholar]
  • Reynolds C.S., 2006. The ecology of phytoplankton. Cambridge University Press, London, 4, 535 p. [Google Scholar]
  • Reynolds C.S., Huszar V.L.M., Kruk C., Nasseli-Flores L. & Melo S., 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24 : 417-428. [CrossRef] [Google Scholar]
  • Rigosi A. & Rueda J.F., 2012. Hydraulic control of short-term successional changes in the phytoplankton assemblage in stratified reservoirs. Ecol. Eng. 44 : 216-226. [CrossRef] [Google Scholar]
  • Salmaso N., Morabito G., Buzzi F., Garibaldi L., Simona M. & Mosello R., 2006. Phytoplankton as an indicator of the water quality of the deep lakes south of the Alps. Hydrobiologia 563 : 167-187. [CrossRef] [Google Scholar]
  • Sarmento H. & Descy J.-P., 2008. Use of marker pigments and functional groups for assessing the status of phytoplankton assemblages in lakes. J. Appl. Phycol. 20 : 1001-1011. [CrossRef] [Google Scholar]
  • Sarmento H., Unrein F., Isumbisho M., Stenuite S., Gasol J.M. & Descy J.P., 2008. Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern Africa. Freshw. Biol. 53 : 756-771. [CrossRef] [Google Scholar]
  • Smith V.H., 1983. Low nitrogen to phosphorus ratios favour dominance by bluegreen algae in lake phytoplankton. Science 221 : 669-671. [CrossRef] [PubMed] [Google Scholar]
  • Starmach, 1972. Chlorophyta III. Flora Słodkowodna Polski, In: Starmach K. (Ed.), Polska Akademia Nauk, Instytut botaniki. Państwowe Wydawnictwo Naukowe, Warszawa – Kraków, 10. [Google Scholar]
  • Starmach, 1974. Cryptophycea Dinophycea Raphidophycea. Flora Słodkowodna Polski, In: Starmach K. (Ed.), Polska Akademia Nauk, Instytut botaniki. Państwowe Wydawnictwo Naukowe, Warszawa – Kraków, 4. [Google Scholar]
  • Starmach, 1983. Euglenophyta. Flora Słodkowodna Polski, In: Starmach K. (Ed.), Polska Akademia Nauk, Instytut botaniki. Państwowe Wydawnictwo Naukowe, Warszawa – Kraków, 3. [Google Scholar]
  • Straškraba M. & Tundisi J.G., 2000. Diretrizes para o gerenciamento de lagos: gerenciamento da qualidade da água de represas, São Carlos, 258 p. [Google Scholar]
  • Thornthon K.W., Kimmel B.L. & Payne F.E., 1990. Reservoir Limnology: ecological perspectives. Wiley-interscience Publications, New York, 246 p. [Google Scholar]
  • Townsend S.A., 2001. Perennial domination of phytoplankton by Botryococcus and Peridinium in a discontinuously polymictic reservoir (tropical Australia). Archiv Fur Hydrobiologie 151 : 529-548. [Google Scholar]
  • Townsend S.A. & Luong-Van J.T., 1998. Phytoplankton biomass and composition in Manton River Reservoir, a mesotrophic impoundment in the Australian wet/dry tropics. Int. Rev. Hydrobiol. 83 : 113-120. [Google Scholar]
  • Tundisi J.G., Matsumura-Tundisi T. & Rocha O., 1999. Theoretical basis for reservoir management. In: Tundisi J.G. & Straskraba M. (Eds.), Theoritical Reservoir Ecology and its Applications. International Institute of Ecology, Brazilian Academy of Sciences and Backhuys Publishers, São Carlos, 505-528. [Google Scholar]
  • Utermöhl H., 1958. Zur Vervolkomnung der quantitativen Phytoplankton: Methodik. Mit. Int. Ver. Theor. Angew. Limnol. 9 : 1-38. [Google Scholar]
  • Vollenweider R.A., 1969. A manual on methods for measuring primary production in aquatic environments. Blackwell Scientific Publications, Philadelphia, 213 p. [Google Scholar]
  • Wetzel R.G., 2001. Limnology: Lake and River Ecosystems, Academic Press, San Diego, 1006 p. [Google Scholar]
  • Wetzel R.G. & Lickens G.E., 2000. Limnological Analyses, 3rd ed. Springer Science and Business Media. [Google Scholar]
  • Xiao L.J., Wang T., Hu R., Han B.P., Wang S., Qian X. & Padisák J., 2011. Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir. Water Res. 45 : 5099-5109. [CrossRef] [PubMed] [Google Scholar]
  • Zeng H., Song L., Yu Z. & Chen H., 2006. Distribution of phytoplankton in the Three-Gorge Reservoir during rainy and dry seasons. Sci. Total Environ. 367 : 999-1009. [CrossRef] [PubMed] [Google Scholar]
  • Zhu K., Bi Y. & Hu Z., 2013. Responses of phytoplankton functional groups to the hydrologic regime in the Daning River, a tributary of Three Gorges Reservoir, China. Sci. Total Environ. 450-451 : 169-177. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.