Numéro |
Hydroécol. Appl.
Volume 14, 2004
|
|
---|---|---|
Page(s) | 69 - 91 | |
DOI | https://doi.org/10.1051/hydro:2004005 | |
Publié en ligne | 1 mai 2007 |
Mixing physical habitat and streamflow time series analysis
Fort Collins Science Centre, US Geological Survey. 2150 Centre Avenue, Building C. Fort Collins, Colorado 80526.
Four observations from two case studies are presented: physical habitat analysis of the Virgin River in southwestern Utah and upper Animas Basin in southwestern Colorado. The Virgin River is usually considered a sand bed river. Cross-sectional measurements, made at three streamflows, show there was considerable change in the channel between the times of the three sets of measurements. First observation: it is important to keep the three sets of data as individual data sets. Second observation: the channel index is not fixed in a river with a moveable-bed and changes affect understanding of the aquatic system. The Animas River has a wide range of streamflows and high metals toxicity. Both winter and spring discharges may limit trout populations. Third observation: (from Animas River) habitat time series analysis should be done with a model that specifically links physical habitat relations and streamflows. Fourth observation: annual time series of habitat suitability considering metals toxicity can be generated. Considering the third and fourth observation together leads to the secondary observation that the hydraulic and stream flow conditions that favor one species may not be as good for the species favored by the water quality conditions.
Key words: time series analysis / physical habitat modeling / Animas River / Virgin River
© EDF, 2004
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.