Numéro |
Hydroécol. Appl.
Volume 14, 2004
|
|
---|---|---|
Page(s) | 119 - 138 | |
DOI | https://doi.org/10.1051/hydro:2004008 | |
Publié en ligne | 1 mai 2007 |
A Meso-scale Habitat Classification Method for Production Modelling of Atlantic Salmon in Norway
1
Norwegian University of Science and Technology, Department. of Hydraulic and Environmental Engineering, S.P. Andersensvei 5. N-7491 Trondheim, Norway.
2
Sintef Energy Research, Sem S ae landsvei 11, N-7465 Trondheim, Norway.
3
Norwegian Institute for Nature Research (NINA), Tungasletta 2, N-7485 Trondheim, Norway.
4
University of Innsbruck, Faculty of Civil Engineering and Architecture, Institute of Hydraulic Engineering, Technikerstraße 13, A-6020 Innsbruck, Austria.
Meso-scale classification of rivers has been used for decades in hydrology and ecology. Recent research has demonstrated a large potential for using this in ecohydraulics. Habitat modellers have to look at complex systems (e.g. catchments), where problems inherent in applying models developed for small scales applied for larger scales need to be overcome. The use of hydro-morphological units linked to meso-habitats extends the information and helps bypassing the problems arising from scale alteration. The process is called upscaling. This paper presents a physical approach for mesohabitat assessment in small to medium sized rivers, with the purpose of serving as a scaling tool for physical habitat information from micro-scale to macro-scale. Results of the assessment are to be used for population modelling of juvenile Atlantic salmon ( Salmo salar). The system has been tested in Norway and in Great Britain on rivers of various sizes, has a flexible structure, so that it can be adapted to different situations and problems and is also rapid regarding habitat mapping.
Key words: mesohabitats / habitat mapping / scaling / population modelling / hydromorphology
© EDF, 2004
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.