Numéro |
Hydroécol. Appl.
Volume 14, 2004
|
|
---|---|---|
Page(s) | 221 - 244 | |
DOI | https://doi.org/10.1051/hydroecol:2004013 | |
Publié en ligne | 1 mai 2007 |
Role of habitat variability in trout population dynamics: Application of a dynamic population model to three French rivers
1
Electricité de France, Division Recherche et Développement, Departement LNHE - 6, quai Watier 78400 Chatou, France.
2
Cemagref, U. R. Biologie des Ecosystèmes Aquatiques, Laboratoire d'Hydroécologie Quantitative, 3 bis quai Chauveau, CP220, 69336 Lyon Cedex 09, France.
The Instream Flow Incremental Methodology (IFIM) was developed to determine flows that must be maintained downstream of hydropower plants to preserve aquatic populations. It is based on the hypothesis that the characteristics of the habitat in periods of low flow have a crucial impact on the dynamics of these populations. Other parameters that may also affect populations include: water quality, temperature, flood episodes, strategies for stocking, fishing, etc. Dynamic models of fish populations are now being developed in an attempt to integrate all these factors. The model presented here was applied on 3 populations (on Oir River, Neste d'Oueil River, and Roizonne River). The study has highlighted the fundamental role of the temporal variability of environmental parameters (particularly temperature, discharge and Weighted Surface Area) in structuring trout populations. Particularly, the flow-related habitat role simulated in the model – through a phenomenon of compensation during the first months of life and through displacement resulting in mortality, and mortality among fry when discharge is high – was illustrated by these examples.
Key words: population dynamics / modeling / Leslie matrix / IFIM / brown trout
© EDF, 2004
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.