Open Access
Hydroécol. Appl.
Volume 19, 2016
Page(s) 147 - 172
Publié en ligne 24 novembre 2014
  • Bacchetti De Gregoris T., Aldred N., Clare A.S. & Burgess J.G., 2011. Improvement of phylum- and class-specific primers for real-time PCR quantification of bacterial taxa. J Microbiol. Methods 86(3) : 351-356. [CrossRef] [PubMed] [Google Scholar]
  • Barton A.F., Wallis M.R., Sargison J.E., Buia A. & Walker G.J., 2008. Hydraulic roughness of biofouled pipes, biofilm character, and measured improvements from cleaning. J Hydraulic Engineering-Asce 134(6) : 852-857. [CrossRef] [Google Scholar]
  • Beale D.J., Barratt R., Marlow D.R., Dunn M.S., Palombo E.A., Morrison P.D. & Key C., 2013. Application of metabolomics to understanding biofilms in water distribution systems: a pilot study. Biofouling 29(3) : 283-294. [CrossRef] [PubMed] [Google Scholar]
  • Camper A., Burr M., Ellis B., Butterfield P., & Abernathy C. 1998. Development and structure of drinking water biofilms and techniques for their study. J. Appl. Microbiol. 85 Suppl. 1: 1S-12S. [CrossRef] [PubMed] [Google Scholar]
  • Chanudet V., Guédant P., Rode W., Godon A., Guérin F., Serça D., Deshmukh C. & Descloux S., 2014. Evolution of the physico-chemical water quality in the Nam Theun 2 Reservoir for the first 5 years after impoundment. Hydroécol. Appl. (same issue). [Google Scholar]
  • Deer W.A., Howie R.A. & Zussman J., 2013. An introduction to the rock-forming minerals. The Mineralogical Society (3rd edition), London, 498 p. [Google Scholar]
  • Descloux S., Guédant P., Phommachanh D. & Luthi R., 2014. Main features of the Nam Theun 2 hydroelectric project (Lao PDR) and the associated environmental monitoring programme. Hydroécol. Appl. (same issue). [Google Scholar]
  • Douterelo I., Sharpe R.L. & Boxall J.B., 2013. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system. Water Res. 47(2) : 503-516. [CrossRef] [PubMed] [Google Scholar]
  • Fierer N., Jackson J.A., Vilgalys R. & Jackson R.B., 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 71(7) : 4117-4120. [CrossRef] [PubMed] [Google Scholar]
  • Frias J., Ribas F. & Lucena F., 2001. Effects of different nutrients on bacterial growth in a pilot distribution system. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology 80(2) : 129-138. [CrossRef] [Google Scholar]
  • Hedrich S., Schlomann M. & Johnson D.B., 2011. The iron-oxidizing proteobacteria. Microbiol.-Sgm 157 : 1551-1564. [CrossRef] [Google Scholar]
  • Jang H.J., Choi Y.J., Ro H.M. & Ka J.O., 2012. Effects of phosphate addition on biofilm bacterial communities and water quality in annular reactors equipped with stainless steel and ductile cast iron pipes. J. Microbiol. 50(1) : 17-28. [CrossRef] [PubMed] [Google Scholar]
  • Kusnetsov J.M., Tulkki A.I., Ahonen H.E. & Martikainen P.J., 1997. Efficacy of three prevention strategies against legionella in cooling water systems. J. Appl. Microbiol. 82(6) : 763-768. [CrossRef] [PubMed] [Google Scholar]
  • Larese-Casanova P., Haderlein S.B. & Kappler A., 2010. Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: Effect of pH, bicarbonate, phosphate, and humic acids. Geochimica Cosmochimica Acta 74(13) : 3721-3734. [CrossRef] [Google Scholar]
  • Lehtola M.J., Miettinen I.T., Keinanen M.M., Kekki T.K., Laine O., Hirvonen A., Vartiainen T. & Martikainen P.J., 2004. Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res. 38(17) : 3769-3779. [Google Scholar]
  • Neria-Gonzalez I., Wang E.T., Ramirez F., Romero J.M. & Hernandez-Rodriguez C., 2006. Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico. Anaerobe 12(3) : 122-133. [CrossRef] [PubMed] [Google Scholar]
  • Niquette P., Servais P. & Savoir R., 2000. Impacts of pipe materials on densities of fixed bacterial biomass in a drinking water distribution system. Water Res. 34(6) : 1952-1956. [CrossRef] [Google Scholar]
  • Norton C.D. & LeChevallier M.W., 2000. A pilot study of bacteriological population changes through potable water treatment and distribution. Appl. Environ. Microbiol. 66(1) : 268-276. [CrossRef] [PubMed] [Google Scholar]
  • Oakridge National Laboratory M., 2011. Best Practice Catalog - Penstocks and tunnels. Hydropower Advancement Project. [Google Scholar]
  • Pedersen K., 1990. Biofilm Development on Stainless-Steel and Pvc Surfaces in Drinking-Water. Water Res. 24(2) : 239-243. [CrossRef] [Google Scholar]
  • Percival S.L., Knapp J.S., Edyvean R.G.J. & Wales D.S., 1998. Biofilms, mains water and stainless steel. Water Res. 32(7) : 2187-2201. [CrossRef] [Google Scholar]
  • Schultz M.P. & Swain G.W., 2000. The influence of biofilms on skin friction drag. Biofouling 15(1-3) : 129-139. [CrossRef] [PubMed] [Google Scholar]
  • Schwartz T., Hoffmann S. & Obst U., 1998. Formation and bacterial composition of young, natural biofilms obtained from public bank-filtered drinking water systems. Water Res. 32(9) : 2787-2797. [CrossRef] [EDP Sciences] [Google Scholar]
  • Stoodley P., Dodds I., Boyle J.D. & Lappin-Scott H.M., 1998. Influence of hydrodynamics and nutrients on biofilm structure. J. Appl. Microbiol. 85 Suppl. 1 : 19S-28S. [CrossRef] [PubMed] [Google Scholar]
  • Straub K.L., Schonhuber W.A., Buchholz-Cleven B.E.E. & Schink B., 2004. Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiol. J. 21(6) : 371-378. [CrossRef] [Google Scholar]
  • Van Mooy B.A., Hmelo L.R., Fredricks H.F., Ossolinski J.E., Pedler B.E., Bogorff D.J., & Smith P.J., 2014. Quantitative exploration of the contribution of settlement, growth, dispersal and grazing to the accumulation of natural marine biofilms on antifouling and fouling-release coatings. Biofouling 30(2) : 223-236. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.