Open Access
Hydroécol. Appl.
Volume 21, 2021
Page(s) 93 - 113
Publié en ligne 15 avril 2021
  • Alsaffar Z., Cúrdia J., Borja A., Irigoien X. & Carvalho S., 2019. Consistent variability in beta-diversity patterns contrasts with changes in alpha-diversity along an onshore to offshore environmental gradient: the case of Red Sea soft-bottom macrobenthos. Marine Biodiversity 49: 247–262. [Google Scholar]
  • Al-Yamani F., Boltachova N., Revkov N., Makarov M., Grintsov V., Kolesnikova E. & Murina G.V., 2009. Winter species composition, diversity and abundance of macrozoobenthos in Kuwait’s waters, Arabian Gulf. ZooKeys 31: 178–38. [Google Scholar]
  • Anderson M.J., Ford R.B., Feary D.A. & Honeywill C., 2004. Quantitative measures of sedimentation in an estuarine system and its relationship with intertidal soft sediment infauna. Marine Ecology Progress Series 272: 338–48. [Google Scholar]
  • APHA, 2002. Standard methods for the examination of water and wastewater, 19 ed. Washington, DC: American Public Health Association. [Google Scholar]
  • Bolam S.G., Fernandez T.F., Read P. & Raffaelli D., 2000. Effects of macroalgal mats on intertidal sandflats: an experimental study. Journal of Experimental Marine Biology and Ecology 249:123–137. [PubMed] [Google Scholar]
  • Caeiro S., Costa M., Ramos T., Fernandes F., Silveira N., Coimbra A., Medeiros G. & Painho M., 2005. Assessing heavy metal contamination in Sado Estuary sediment: an index analysis approach. Ecological Indicators 5: 151–169. [CrossRef] [Google Scholar]
  • Casas Guell E., Teixidó N., Garrabou J. & Cebrian E., 2015. Structure and biodiversity of coralligenous assemblages over broad spatial and temporal scales. Marine Biology 162: 901–912. [Google Scholar]
  • Castelli C., Lardicci D. & Tagliapietra D., 2004. Soft-bottom macrobenthos. Biologia Marina Meditteranea 11: 99–131. [Google Scholar]
  • Coles S.L. & McCain J.C., 1990. Environmental factors affecting benthic infaunal communities of the western Arabian Gulf. Marine Environmental Research 29: 2898–315. [Google Scholar]
  • Dittmann S., 2012. The Wadden Sea ecosystem: stability properties and mechanisms. Berlin: Springer, 307 p. [Google Scholar]
  • Dolbeth M., Ferreira O., Teixeira H., Marques J.C., Dias J.A. & Pardal M.A., 2007. Beach morphodynamic impact on a macrobenthic community along a subtidal depth gradient. Marine Ecology Progress Series 352: 113–124. [Google Scholar]
  • Fukunaga A., Kosaki R.K. & Wagner D., 2017. Changes in mesophotic reef fish assemblages along depth and geographical gradients in the Northwestern Hawaiian Islands. Coral Reefs 36: 785–790. [Google Scholar]
  • Gomes Veloso V., Soares Caetano C.H. & Silva Cardoso R., 2003. Composition, structure and zonation of intertidal macrofauna in relation to physical factors in microtidal sandy beaches at Rio de Janeiro State, Brazil. Scientia Marina 67: 3938–402. [Google Scholar]
  • Henley W.E., Patterson M.A., Neves R.J. & Dennis Lemly A., 2000. Effects of sedimentation and turbidity on lotic food webs: a concise review for natural resource managers. Reviews in Fisheries Science 8: 125–139. [Google Scholar]
  • Hily C., Le Loc’h F., Grall J. & Glémarec M., 2008. Soft bottom macrobenthic communities of North Biscay revisited: long-term evolution under fisheries climate forcing. Estuarine, Coastal and Shelf Science 78: 413–425. [Google Scholar]
  • Jackson J.B.C., 2010. The future of the oceans past. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 3765–3778. [Google Scholar]
  • Jungerstam J., Erlandsson J., McQuaid C.D., Porri F., Westerbom M. & Kraufvelin P., 2014. Is habitat amount important for biodiversity in rocky shore systems? A study of South African mussel assemblages. Marine Biology 161: 1507–1519. [Google Scholar]
  • Kahng S.E., Copus J.M. & Wagner D., 2014. Recent advances in the ecology of mesophotic coral ecosystems (MCEs). Current Opinion in Environmental Sustainability 7: 72–81. [Google Scholar]
  • Karakassis I. & Eleftheriou A., 1997. The continental shelf of Crete: structure of macrobenthic communities. Marine Ecology Progress Series 160: 185–196. [Google Scholar]
  • Koampf J. & Sadrinasab M., 2006. The circulation of the Persian Gulf: a numerical study. Ocean Science, European Geosciences Union (EGU) 2: 27–41. [Google Scholar]
  • Lindfield S.J., Harvey E.S., Halford A.R. & McIlwain J.L., 2016. Mesophotic depths as refuge areas for fishery-targeted species on coral reefs. Coral Reefs 35: 125–137. [Google Scholar]
  • Loiseau N., Legras G., Kulbicki M., Mérigot B., Harmelin-Vivien M., Mazouni N., Galzin R. & Gaertner J.C., 2017. Multi-component β-diversity approach reveals conservation dilemma between species and functions of coral reef fishes. Journal of Biogeography 44: 537–547. [Google Scholar]
  • Mackie A.S., Oliver P.G., Darbyshire T. & Mortimer K., 2005. Shallow marine benthic invertebrates of the Seychelles Plateau: high diversity in a tropical oligotrophic environment. Philosophical Transactions of the Royal Society A: Mathematical, Physical and engineering sciences 363: 203–228. [Google Scholar]
  • Moradi M., Malekzadeh-Viayeh R. & Eshaghi-Rad J., 2014. Biodiversity of scleractinian corals in the reefs of Qeshm and Larak Islands of the Persian Gulf, in association with environmental variables. Journal of the Marine Biological Association of the United Kingdom 94: 907–916. [Google Scholar]
  • Ostrovskii A. & Zatsepin A., 2011. Short-term hydrophysical and biological variability over the northeastern Black Sea continental slope as inferred from multiparametric tethered profiler. Ocean Dynamics 61: 797–806. [Google Scholar]
  • Petersen M.E., 1999. Reproduction and development in Cirratulidae (Annelida: Polychaeta). Hydrobiologia 402: 107–128. [Google Scholar]
  • Pinedo S., Sardá R., Rey C. & Bhaud C., 2000. Effect of sediment particle size on recruitment of Owenia fusiformis in the Bay of Blanes (NW Mediterranean Sea): an experimental approach to explain field distribution. Marine Ecology Progress Series 203: 205–213. [Google Scholar]
  • Pyle R.L., Boland R., Bolick H., Bowen B.W., Bradley C.J., Kane C., Kosaki R.K., Langston R., Longenecker K., Montgomery A., Parrish F.A., Popp B.N., Rooney J., Smith C.M., Wagner D. & Spalding H.L., 2016. A comprehensive investigation of mesophotic coral ecosystems in the Hawaiian Archipelago. PeerJ 4: e2475. [Google Scholar]
  • Qasim S.Z., 1974. Some problems related to the food chain in a tropical estuary. In: Marine food chains (J.H. Steele, Ed.), pp. 45–51. Los Angeles, USA: University of California Press. [Google Scholar]
  • Schelske C.L. & Odum E.P., 1962. Mechanisms maintaining high productivity in Georgia estuaries. Proceedings of the Gulf and Caribbean Fisheries Institute 14: 75–80. [Google Scholar]
  • Schückel U., Beck M. & Kröncke I., 2015. Macrofauna communities of tidal channels in Jade Bay (German Wadden Sea): spatial patterns, relationships with environmental characteristics, and comparative aspects. Marine Biodiversity 45: 841–855. [Google Scholar]
  • Seitz R.D., Dauer D.M., Llansó R.J. & Christopher W., 2009. Long broad-scale effects of hypoxia on benthic community structure in Chesapeake Bay, USA. Journal of Experimental Marine Biology and Ecology 381: 4–12. [Google Scholar]
  • Taherizadeh M.R. & Sharifinia M., 2015. Applicability of ecological benthic health evaluation tools to three subtropical estuaries (Azini, Jask and Khalasi) from the Iranian coastal waters. Environmental Earth Sciences 74: 3485–3499. [Google Scholar]
  • Tagliapietra D. & Sigovini M., 2010. Benthic fauna: collection and identification of macrobenthic invertebrates. Terre et Environnement 88: 253–261. [Google Scholar]
  • Thilagavathi B., Varadharajan D., Babu A., Manoharan J. & Vijayalakshmi S., 2013. Distribution and diversity of macrobenthos in different mangrove ecosystems of Tamil Nadu Coast, India. Aquaculture Research and Development 4: 199–206. [Google Scholar]
  • Tomassetti P., Gennaro P., Lattanzi L., Mercatali I., Persia E., Vani D. & Porrello S., 2016. Benthic community response to sediment organic enrichment by Mediterranean fish farms: case studies. Aquaculture 450: 262–272. [Google Scholar]
  • Veiga P., Torres A.C., Aneiros F., Sousa-Pinto I., Troncoso J.S. & Rubal M., 2016. Consistent patterns of variation in macrobenthic assemblages and environmental variables over multiple spatial scales using taxonomic and functional approaches. Marine Environment Research 120: 191–201. [Google Scholar]
  • Veiga P., Redondo W., Sousa-Pinto I. & Rubal M., 2017. Relationship between structure of macrobenthic assemblages and environmental variables in shallow sublittoral soft bottoms. Marine Environment Research 129: 396–407. [Google Scholar]
  • Zhou F., Liu Y. & Guo H., 2006. Application of multivariate statistical methods to water quality assessment of the watercourses in Northwestern New Territories, Hong Kong. Environmental Monitoring and Assessment 132: 1–13. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.