Open Access
Issue
Hydroécol. Appl.
Volume 19, 2016
Page(s) 27 - 61
DOI https://doi.org/10.1051/hydro/2015001
Published online 02 April 2015
  • Abril G., Guérin F., Richard S., Delmas R., Galy-Lacaux C., Gosse P., Tremblay A., Varfalvy L., dos Santos M. A. & Matvienko, B., 2005. Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Glob. Biogeochem. Cycle 19, GB4007. [Google Scholar]
  • Abril G., Boudou A., Cerdan P., Delmas R., Erard C., Forget P.M., Gosse P., Guerin F., Guillemet L., Pons J.M., Vaquer A., Vaquer Y. & Vigouroux R., 2008. Petit Saut, bilan environnemental après 12 années de fonctionnement. Editions BUCEREP N°ISBN 978-2-911605-53-6. [Google Scholar]
  • Agostinho A.A., Miranda L.E., Bini L.M., Gomes L.C., Thomaz S.M. & Suzuki H.I., 1999. Patterns of colonization in neotropical reservoirs, and prognoses on aging. In: Tundisi J.G. & Straškraba M. (Eds.), Theoretical Reservoir Ecology and its Applications. International Institute if Ecology, Brazilian Academy of Sciences and Backhuys Publishers, 227-265. [Google Scholar]
  • Allan J.D. & Castillo M.M., 2007. Stream Ecology - Structure and function of running waters, Springer, Dordrecht, 436 p. [Google Scholar]
  • Attwood S. & Cottet M., 2015. Malacological and parasitological surveys along the Xe Bangfai and associated rivers: investigations into a possible 2010 outbreak of cercarial dermatitis in Khammouane Province, Lao PDR. Hydroécol. Appl. (same issue). [Google Scholar]
  • Barros N., Cole J.J., Tranvik L.J., Prairie Y.T., Bastviken D., Huszar V.L.M., del Giorgio P. & Roland F., 2011. Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nature Geosci. 4 : 593-596. [CrossRef] [Google Scholar]
  • Baxter R.M., 1977. Environmental effects of dams and impoundments. Ann. Rev. Ecol. Syst. 8 : 255-283. [CrossRef] [Google Scholar]
  • Beeton A.M., 1991. Limnology of the Nam Ngum Reservoir, Laos. Verh. Internat. Verein. Limnol. 24 : 1436-1444. [Google Scholar]
  • Beltman D.J., Clements W.H., Lipton J. & Cacela D., 1999. Benthic invertebrate metals exposure, accumulation and community-level effects downstream from a hard- rock mine site. Environ. Toxicol. Chem. 18 : 299-307. [CrossRef] [Google Scholar]
  • Bergkamp G., McCartney M., Dugan P., McNeely J. & Acreman M., 2000. Dams, Ecosystem Functions and Environmental Restoration. World Commission on Dam Thematic Review Environmental Issues II.1, 187 p. [Google Scholar]
  • Burton E.D., Bush R.T., Sullivan L.A., Johnston S.G. & Hocking R.K., 2008. Mobility of arsenic and selected metals during re-flooding of iron- and organic-rich acid-sulfate soil. Chem. Geol. 253 : 64-73. [CrossRef] [Google Scholar]
  • Cai Q.H. & Hu Z.Y., 2006. Studies on eutrophication problem and control strategy in the Three Gorges Reservoir. Acta Hydrobiol. Sin. 30 : 7-11. [Google Scholar]
  • Chanudet V. & Descloux S., 2008. Pre-impoundment estimation of soil and biomass composition (excluding organic carbon) of the Nam Theun 2 reservoir. EDF report n° IH.NT-WQ.ENV.00027A, 35 p. [Google Scholar]
  • Chanudet V. & Filella M., 2007. The fate of inorganic colloidal particles in Lake Brienz. Aquat. Sci. 69 : 199-211. [CrossRef] [Google Scholar]
  • Chanudet V., Fabre V., & Kaaij, T., 2012. Application of a three-dimensional hydrodynamic model to the Nam Theun 2 Reservoir (Lao PDR), J. Great Lakes Res. 38 : 260-269. [CrossRef] [Google Scholar]
  • Chen H., Wu Y., Yuan X., Gao Y., Wu N., & Zhu D., 2009. Methane emissions from newly created marshes in the drawdown area of the Three Gorges Reservoir. J. Geophys. Res. 114 : D18301. [CrossRef] [Google Scholar]
  • Chen H., Yuan X., Chen Z., Wu Y., Liu X., Zhu D., Wu N., Zhu Q., Peng C. & Li W., 2011. Methane emissions from the surface of the Three Gorges Reservoir. J. Geophys. Res. 116 : D21306. [CrossRef] [Google Scholar]
  • Dai H., Zheng T. & Liu D., 2010. Effects of Reservoir Impounding on Key Ecological Factors in the Three Gorges Region. Procedia Environ. Sci. 2 : 15-24. [CrossRef] [Google Scholar]
  • Davies P.M., Bunn S.E. & Hamilton S.K., 2008. Primary Production in Tropical Streams and Rivers. In: Dudgeon D. (Ed.), Tropical Stream Ecology. Academic Press Elsevier, London, pp. 23-42. [Google Scholar]
  • Descloux S., Chanudet V., Poilvé H., & Grégoire A., 2011. Coassesment of biomass and soil organic carbon stocks in a future reservoir located in Southern Asia. Environ. Monit. Assess. 173 : 723-741. [CrossRef] [PubMed] [Google Scholar]
  • Descloux S., Guedant P., Phommachanh D. & Luthi R., 2015. Main features of the Nam Theun 2 hydroelectric project (Lao PDR) and the associated environmental monitoring programme. Hydroécol. Appl. (same issue-a). [Google Scholar]
  • Descloux S., Taquet B., Wanidaporn R. & Guedant P., 2015. Efficiency of the Nam Theun 2 downstream structures on water aeration and degassing. Hydroécol. Appl. (same issue-b). [Google Scholar]
  • Deshmukh, C., 2013. Greenhouse gas (CH4/CO2/N2O) emissions from a newly flooded reservoir in subtropical South Asia: case of Nam Theun 2 Reservoir, Lao PDR. University Paul Sabatier (Toulouse III), Toulouse, 215 p. [Google Scholar]
  • dos Santos M.A., Matvienko B., Rosa L.P., Sikar E., & dos Santos E.O., 2005. Gross greenhouse gas emissions from Brazilian hydro reservoirs. In: Tremblay A., Varfalvy L., Roehm C. & Garneau M. (Eds.), Fluxes and Processes. Hydroelectric Reservoirs and Natural Environments. Environmental Science Series, Springer-Verlag, Berlin Heidelberg, pp. 267-291. [Google Scholar]
  • FLUX, 1999. Stream Load Computations (Version 5.1). Environmental Laboratory USAE Waterways Experiment Station, Vicksburg, MI. Available from: <http://el.erdc.usace.army.mil/elmodels/emiinfo.html> (accessed 13.11.2013) [Google Scholar]
  • Freund J.G. & Petty J.T., 2007. Response of fish and macroinvertebrate bioassessment indices to water chemistry in a mined appalachian watershed. Environ. Manag. 39 : 707-720. [CrossRef] [Google Scholar]
  • Friedl G. & Wüest A., 2002. Disrupting biogeochemical cycles - Consequences of damming. Aquat. Sci. 64 : 55-65. [CrossRef] [Google Scholar]
  • Galy-Lacaux C., Delmas R., Jambert C., Dumestre J.F., Labroue L., Richard S. & Gosse P. 1997. Gaseous emissions and oxygen consumption in hydroelectric dams: A case study in French Guiana. Global Biogeochem. Cycles 11 : 471-483. [CrossRef] [Google Scholar]
  • Galy-Lacaux C., Delmas R., Kouadio G., Richard S. & Gosse P., 1999. Long-term greenhouse gas emissions from hydroelectric reservoirs in tropical forest regions. Global Biogeochem. Cycles 13 : 503-517. [CrossRef] [Google Scholar]
  • Gerhardt A., 1994. Short term toxicity of iron (Fe) and lead (Pb) to the mayfly Leptophlebia marginata L. (Insecta) in relation to freshwater acidification. Hydrobiologia 284 : 157-168. [CrossRef] [Google Scholar]
  • Gong G.C., Chang J., Chiang K.P., Hsiung T.M., Hung C.C., Duan S.W. & Codispoti L.A., 2006. Reduction of primary production and changing of nutrient ratio in the East China Sea: effect of the Three Gorges Dam? Geophys. Res. Lett. 33 : L07610. [Google Scholar]
  • Gosse P. & Grégoire A., 1997. Artificial re-oxygenation of the Sinnamary downstream of Petit Saut dam (French Guiana). Hydroecol. Appl. 9 : 23-56. [CrossRef] [EDP Sciences] [Google Scholar]
  • Gosse P. & Luck M., 2003. Analyse de mesures disponibles et acquises in situ en avril 2001 en vue d’une modélisation de l’oxygène dissous des rivières Nam Kathang et Sé Ban Fai (Laos). R&D report HP-75/01/078, Electricité de France, Paris, 43 p. [Google Scholar]
  • Guérin F., Abril G., de Junet A. & Bonnet M.P., 2008. Anaerobic decomposition of tropical soils and plant material: Implication for the CO2 and CH4 budget of the Petit Saut Reservoir, Appl. Geochem. 23 : 2272-2283. [CrossRef] [Google Scholar]
  • Gunkel G., Lange U., Walde D. & Rosa J.W.C., 2000. Environmental Impact of an Amazon Reservoir, Curuá-Una /Pará: Limnological Aspects. German-Brazilian Workshop on Neotropical Ecosystems – Achievements and Prospects of Cooperative Research Hamburg, September 3-8. [Google Scholar]
  • Kemenes A., Forsberg B.R. & Melack J.M., 2007. Methane release below a Tropical Hydroelectric Dam, Geophys. Res. Lett. 34, L12809. [CrossRef] [Google Scholar]
  • Kummu M. & Varis O., 2007. Sediment-related impacts due to upstream reservoir trapping, the Lower Mekog River. Geomorphology 85 : 275-293. [CrossRef] [Google Scholar]
  • Lampert W. & Sommer U., 2008. Limnoecology – 2nd Edition, Oxford University Press, New York, 324 p. [Google Scholar]
  • Lewis W.M.Jr, 2008. Physical and Chemical Features of Tropical Flowing Waters. In: Dudgeon D. (Ed.), Tropical Stream Ecology, Academic Press Elsevier, London. 2-21. [Google Scholar]
  • Liu J.G., Mason P.J., Clerici N., Chen S., Davis A., Miao F., Deng H. & Liang L., 2004. Landslide hazard assessment in the Three Gorges area of the Yangtze river using ASTER imagery: Zigui–Badong. Geomorphology 61 : 171-187. [CrossRef] [Google Scholar]
  • Martinet J., Guedant P. & Descloux S., 2015. Phytoplankton community and trophic status assessment of a newly impounded sub-tropical reservoir: case study of the Nam Theun 2 Reservoir (Lao PDR, Southeast Asia). Hydroécol. Appl. (same issue). [Google Scholar]
  • McCartney M.P., Sullivan C. & Acreman M.C., 2001. Ecosystem Impacts of Large Dams. Background Paper Nr. 2 Prepared for IUCN / UNEP / WCD, 82 p. [Google Scholar]
  • Morris G., 1998 Reservoir sedimentation handbook: Design and management of dams, reservoirs and watersheds for sustainable use, McGraw Hill Professional, 848 p. [Google Scholar]
  • Müller B., Berg M., Yao Z.P., Zhang X.F., Wang D. & Pfuger A., 2008. How polluted is the Yangtze river? Water quality downstream from the Three Gorges Dam. Sci. Tot. Environ. 402 : 232-247. [CrossRef] [Google Scholar]
  • NTPC (Nam Theun 2 Power Company), 2005. Environmental Assessment and Management Plan – Nam Theun 2 Hydroelectric Project. Nam Theun 2 Power Company, Vientiane, 212 p. [Google Scholar]
  • Pécastaings S., Godon A., & Roques C., 2014. Biofilm colonizing the Nam Theun 2 Power Plant penstock - mechanism and potential evolution. Hydroécol. Appl. (same issue). [Google Scholar]
  • Peretyazhko T. & Sposito G., 2005. Iron(III) reduction and phosphorous solubilization in humid tropical forest soils. Geochim. Cosmochim. Ac. 69 : 3643-3652. [CrossRef] [Google Scholar]
  • Richard S., Arnoux A. & Cerdan P., 1997. Evolution in physico-chemical water quality in the reservoir and downstream following the filling of Petit-Saut dam (French Guiana). Hydroecol. Appl. 9 : 57-83. [CrossRef] [EDP Sciences] [Google Scholar]
  • Richard S., Gosse P., Grégoire A., Delmas R., & Galy-Lacaux C., 2005. Impact of Methane Oxidation in Tropical Reservoirs on Greenhouse Gases Fluxes and Water Quality. In: Tremblay A., Varfalvy L., Roehm C. & Garneau M. (Eds.), Fluxes and Processes. Hydroelectric Reservoirs and Natural Environments. Environmental Science Series, Springer-Verlag, Berlin Heidelberg, 529-560. [Google Scholar]
  • Roland F., Vidal L.O., Pachero F.S., Barros N.O., Assireu A., Ometto J.P.H.B., Cimbleris A.C.P. & Cole J.J., 2010. Variability of carbon dioxide flux from tropical (Cerrado) hydroelectric reservoirs. Aquat. Sci. 72 : 283-293. [CrossRef] [Google Scholar]
  • Rumpel C., Alexis T.M., Chabbi A., Chaplot V., Rasse D.P., Valentin C. & Mariotti A., 2006. Black carbon contribution to soil organic matter composition in tropical sloping land under slash and burn agriculture. Geoderma 130 : 35-46. [CrossRef] [Google Scholar]
  • Serça D., Deshmukh C., Rode W., Vongkhamsao A, Pighini S., Godon A., Guédant P., Chanudet V., Descloux S. & Guérin F. 2015. Methane emissions from the Nam Theun 2 Reservoir within 1804 the first 5 years after impoundment. Hydroécol. Appl. (same issue). [Google Scholar]
  • Tang H.B., Liu G.X. & Hu Z.Y., 2006. Preliminary research on the algal bloom of Peridiniopsis sp. in Gaolan River of the Three Gorges Reservoir. Acta Hydrobiol. Sin. 30 : 47-51. [Google Scholar]
  • Tullos D., 2009. Assessing the influence of environmental impact assessments on science and policy: An analysis of the Three Gorges Project. J. Env. Manage. 90 : S208-S223. [CrossRef] [Google Scholar]
  • Vaquer A., Pons V. & Lautier J., 1997. Seasonal and spatial distribution of phytoplankton in Petit-Saut Reservoir (French Guiana). Hydroécol. Appl. 9 : 169-193. [CrossRef] [EDP Sciences] [Google Scholar]
  • Walker W.W., 1999. Simplified procedures for eutrophication assessment and prediction: user manual, Instruction Report W- 96-2, US Army Corps of Engineers, 235 p. [Google Scholar]
  • Yang S.L., Zhang J. & Xu X.J., 2007. Influence of the Three Gorges Dam on downstream delivery of sediment and its environmental implications, Yangtze River. Geophys. Res. Lett. 34 : L10401. [CrossRef] [Google Scholar]
  • Yang Z., Wang H., Saito Y., Milliman, J.D., Xu, K., Qiao, S. & Shi G., 2006. Dam impacts on the Changjiang (Yangtze) River sediment discharge to the sea: The past 55 years and after the Three Gorges Dam. Water Resour. Res. 42 : W04407. [Google Scholar]
  • Young E.O. & Ross D.S., 2001. Phosphate release from seasonally flooded soils. J. Environ. Qual. 30 : 91-101. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.