Open Access
Hydroécol. Appl.
Volume 19, 2016
Page(s) 63 - 86
Publié en ligne 25 mars 2015
  • Abril G., Guérin F., Richard S., Delmas R., Galy‐Lacaux C., Gosse P., Tremblay A., Varfalvy L., dos Santos M.A. & Matvienko B., 2005. Carbon dioxide and methane emissions and the carbon budget of a 10‐year old tropical reservoir (Petit Saut, French Guiana). Glob. Biogeochem. Cycles 19(4) : 16 p. [Google Scholar]
  • Avery S.T. & Novak P., 1978. Oxygen Transfer at Hydraulic Structures. J. Hyd. Div., ASCE 104 : 1521-1540. [Google Scholar]
  • Baylar A. & Bagatur T., 2000. Study of Aeration Efficiency at Weirs. Turk J. Engin. Environ. Sci. 24 : 255-264. [Google Scholar]
  • Baylar A., Kisi O. & Emiroglu M.E., 2009. Modeling Air Entrainment Rate and Aeration Efficiency of Weirs Using ANN Approach. G.U. J. Sci. 22(2) : 107-116. [Google Scholar]
  • Chanudet V., Guédant P., Rode W., Godon A., Guérin F., Serça D., Deshmukh C. & Descloux S., 2015. Evolution of the physico-chemical water quality in the Nam Theun 2 Reservoir and downstream rivers for the first 5 years after impoundment. Hydroécol. Appl. (same issue). [Google Scholar]
  • Chanson H. 1995. Predicting Oxygen Content Downstream of Weirs, Spillways and Waterways. Proc. Instn Civ. Engrs Wat. Marit. & Energy, UK, Vol. 112, Mar., pp. 20-30 (ISSN 0965-0946). [Google Scholar]
  • Descloux S., Chanudet V., Poilvé H. & Grégoire A., 2011. Coassesment of biomass and soil organic carbon stocks in a future reservoir located in Southern Asia. Environ. Monit. Assess. 173 : 723-741. [CrossRef] [PubMed] [Google Scholar]
  • Descloux S., Guedant P., Phommachanh D. & Luthi R., 2015. Main features of the Nam Theun 2 hydroelectric project (Lao PDR) and the associated environmental monitoring programme. Hydroécol. Appl. (same issue). [Google Scholar]
  • Deshmukh C., Serça D., Delon C., Tardif R., Demarty M., Jarnot C., Meyerfeld Y., Chanudet V., Guédant P., Rode W., Descloux S. & Guérin F. (2014). Physical controls on CH 4 emissions from a newly flooded subtropical freshwater hydroelectric reservoir: Nam Theun 2. Biogeosciences Discussions 11(2), 3271-3317. [CrossRef] [Google Scholar]
  • Deshmukh C., Guérin F., Pighini S., Vongkhamsao A., Guédant P., Rode W., Chanudet V., Descloux S., Godon A. & Serça D. Low methane (CH4) emissions downstream a newly flooded subtropical hydroelectric reservoir in southeast Asia: the Nam Theun 2 Reservoir (Lao PDR). Biogeosciences, submitted. [Google Scholar]
  • Deswal S., 2009. Oxygenation by hollow plunging water jet. J. Instit. Engin. 7 : 40-47. [Google Scholar]
  • DTG, 2012. Rapport : Nakai Reservoir on the Nam Theun River, capacity curve calculation, 2012 data, Grenoble, 9 p. [Google Scholar]
  • Emiroglu M.E. & Baylar A., 2003. Experimental Study of the Influence of Different Weir Types on the Rate of Air Entrainment. Water Qual. Res. J. Canada 38 : 769-783. [Google Scholar]
  • Emiroglu M.E. & Baylar A., 2006. Self-aeration in smooth and stepped chutes. Int. J. Sci.Technol. 1(2) : 105-113. [Google Scholar]
  • EPRI (Electric Power Research Institute), 2002. Maintaining and Monitoring Dissolved Oxygen at Hydroelectric Projects: Status Report, EPRI Palo Alto, CA: 2002 1005194, 194 p. [Google Scholar]
  • Fabre V., Chanudet V. & Bellet L., 2010. Results of the velocity measurements on the Nam Theun 2 reservoir, EDF report IH.NT-WQ.ENV.00041A, 25 p. [Google Scholar]
  • Galy-Lacaux C., Delmas R., Jambert C., Dumestre J.F., Labroue L., Richard S. & Gosse P., 1997. Gaseous emissions and oxygen consumption in hydroelectric dams: A case study in French Guyana. Glob. Biogeochem. Cycles 11 : 471-483. [Google Scholar]
  • Galy-Lacaux C., Delmas R., Kouadio G., Richard S. & Gosse P., 1999. Long-term greenhouse gas emissions from hydroelectric reservoirs in tropical forest regions. Glob. Biogeochem. Cycles 13 : 503-517. [Google Scholar]
  • Gameson A., Vandyke K. & Ogden C., 1958. The effect of temperature on aeration at weirs. Water Engineering 62. [Google Scholar]
  • Gosse P. & Gregoire A., 1997. Dispositif de réoxygénation artificielle du Sinnamary à l’aval du barrage de Petit-Saut (Guyane). Hydroécol. Appl. 9 : 23-56. [Google Scholar]
  • Gosse P., Sabaton S., Travade F. & Eon J., 1997. EDF experience in improving reservoir releases for ecological purposes. Water for a changing global community. Energy and Water: Sustainable Development. In: Holly M. & Alsaffar A. (Eds.), 452-458, Am. Soc. Civ. Eng., New-York, 1997. [Google Scholar]
  • Gregoire A. & Descloux S., 2009. Advantages and disadvantages of an aerating weir in a tropical zone. Verh. Internat. Verein. Limnol. 30 : 850-853. [Google Scholar]
  • Guérin F., Abril G., de Junet A., & Bonnet M.-P., 2008. Anaerobic decomposition of tropical soils and plant material: Implication for the CO2 and CH4 budget of the Petit Saut Reservoir. Appl. Geochem. 23 : 2272-2283. [CrossRef] [Google Scholar]
  • Gulliver J.S., Wilhelms S.C. & Parkhill K.L., 1998. Predictive capabilities in oxygen transfer at hydraulic structures. J. hydraulic Engin. 124(7) : 664-671. [CrossRef] [Google Scholar]
  • Hauser G. & Proctor G., 1993. Performance of prototype aerating weirs downstream from TVA Hydropower dams. Proc. Natl. Conf. Hydraul. Eng. San Francisco. ASCE, p. 99. [Google Scholar]
  • Johnson P.L., 1975. Prediction of Dissolved Gas at Hydraulic Structures. Engineering and Research Center Bureau of Reclamation Denver, Colorado 80225, Report GR-8-75, 78 p. [Google Scholar]
  • Kaya N. & Emiroglu M.E., 2010. Study of oxygen transfer efficiency at baffled chutes. Proceedings of the ICE - Water Management, Vol. 163, Issue 9, July 2010, pp. 447-456. [Google Scholar]
  • Kutty M.N., 1972. Respiratory quotient and ammonia excretion in Tilapia mossambica. Marine Biology 16(2) : 126-133. [Google Scholar]
  • Kutty M.N., & Saunders R.L., 1973. Swimming performance of young Atlantic salmon (Salmo salar) as affected by reduced ambient oxygen concentration. Journal of the Fisheries Board of Canada 30(2) : 223-227. [CrossRef] [Google Scholar]
  • Patin S., 1999. Environmental impact of the offshore oil and gas industry. Economitor Publication 448. [Google Scholar]
  • R Development Core Team, 2009. A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. [Google Scholar]
  • Richard S., Gregoire A. & Gosse P., 2005. The efficiency of an artificial weir in oxygenating and removing CH4 from water released by the Petit Saut hydroelectric dam (French Guiana). Revue des Sciences de l’Eau 18 : 127-141. [CrossRef] [Google Scholar]
  • Sackett W.M. & Brooks J.M., 1975. Origin and distributions of low molecular weight hydrocarbons in Gulf of Mexico coastal waters. In: Church T.M. (Ed.), Marine Chemistry in the Coastal Environment, Am. Chem. Soc. Symp. Ser., 18, pp. 211-230. [Google Scholar]
  • Toombes L. & Chanson H., 2000. Air-water flow and gas transfer at aeration cascades: A comparative study of smooth and stepped chutes. Hydraulics of Stepped Spillways, In: Minor and Hager (Eds.), 2000, Balkema, Rotterdam, ISBN 905809 135X. [Google Scholar]
  • Townsend S.A., 1999. The seasonal pattern of dissolved oxygen, and hypolimnetic deoxygenation, in two tropical Australian reservoirs. Lakes & Reservoirs: Research & Management 4 : 41-53. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.